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Accurate estimates of Mycobacterium tuberculosis infection in young children provide a critical indicator of
ongoing community transmission of M. tuberculosis. Cross-reactions due to infection with environmental myco-
bacteria and/or bacille Calmette-Guérin (BCG) vaccination compromise the estimates derived from population-
level tuberculin skin-test surveys using traditional cutoff methods. Newer statistical approaches are prone to failure
of model convergence, especially in settings where the prevalence ofM. tuberculosis infection is low and environ-
mental sensitization is high. We conducted a tuberculin skin-test survey in 5,119 preschool children in the general
population and among household contacts of tuberculosis cases in 2012–2014 in a district in northern Malawi
where sensitization to environmental mycobacteria is common and almost all children are BCG-vaccinated. We
compared different proposed methods of estimatingM. tuberculosis prevalence, including a method described by
Rust and Thomasmore than 40 years ago.With the different methods, estimated prevalence in the general popula-
tion was 0.7%–11.5% at ages <2 years and 0.8%–3.3% at ages 2–4 years. The Rust and Thomas method was the
only method to give a lower estimate in the younger age group (0.7% vs 0.8%), suggesting that it was the only
method that adjusted appropriately for themarked effect of BCG-attributable induration in the very young.

annual risk of tuberculous infection; bacille Calmette-Guérin; children; infection prevalence; Malawi;
Mycobacterium tuberculosis; tuberculin skin test

Abbreviations: ARTI, annual risk of Mycobacterium tuberculosis infection; BCG, bacille Calmette-Guérin; HIV, human
immunodeficiency virus; IGRA, interferon-gamma release assay; KHDSS, Karonga Health and Demographic Surveillance
Site; TST, tuberculin skin test.

Childhood tuberculosis has not been considered a priority in
high-burden settings until recent years (1). Children have pauci-
bacillary disease and are unlikely to contribute to onward trans-
mission ofMycobacterium tuberculosis (2). This has led to
significant underreporting of pediatric tuberculosis (1). However,
childhood tuberculosis andM. tuberculosis infection in the very
young necessarily result from recent transmission, so accurate es-
timates could provide a critical indicator of the effectiveness of
prevention programs to curtail ongoing communityM. tubercu-
losis transmission (3, 4).

Historically, measurements of the global burden of tuberculo-
sis, including the incidence of tuberculosis disease, have been

inferred in part from estimates of the annual risk ofM. tuberculo-
sis infection (ARTI) as derived from M. tuberculosis infection
prevalence data obtained from tuberculin skin-test (TST) surveys
in school-age children (5–7). Direct estimates of tuberculosis dis-
ease incidence would require prohibitively large longitudinal co-
horts, even in areas where the burden of disease is high (8). Hence
the comparatively inexpensive and logistically simple TST sur-
veys were undertaken on a global programmatic scale. The infer-
ence of tuberculosis disease incidence from ARTI was based
on the Styblo rule, where a 1% ARTI risk corresponds to 50
incident tuberculosis cases per 100,000 population per year
(5). It is now recognized that accurate estimates of incidence of

1015 Am J Epidemiol. 2017;186(8):1015–1022

Downloaded from https://academic.oup.com/aje/article-abstract/186/8/1015/3836016
by London School of Hygiene & Tropical Medicine user
on 09 February 2018

http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


tuberculosis cases using the Styblo rule are not valid (9), although
trend estimates of ARTI based on tuberculin surveys can be
useful (10–13).

The TST measures the immunological response to a previ-
ously acquired infection with a mycobacterium that shares anti-
gens with those in tuberculin. The challenge is to disentangle
reactions due toM. tuberculosis infection from reactions due to
exposure to environmental mycobacteria and bacille Calmette-
Guérin (BCG) vaccination (12). Despite the lack of specificity
of the TST (14), and because of the cost and logistical issues
(need for venipuncture, skilled personnel, and laboratory equip-
ment) (15) and the lack of clarity around the conversion and
reversion phenomena associated with serial testing of the more
specific interferon-gamma release assays (IGRAs) (16), serial
population-wide tuberculin surveys undertaken in young chil-
dren in high-burden countries remain among the few ways to
assess the impact of tuberculosis-control strategies over time.
However, this assessment relies on the need for a consistent esti-
mate of the prevalence ofM. tuberculosis infection, which is not
always possible with the traditional cutoff methods, especially
in settings where cross-reactivity with environmental mycobac-
teria and BCG-attributable reactions are common (11, 17).

Despite the advent of sophisticated statistical techniques,
such as latent variable modeling (18), ascertainment of the prev-
alence of M. tuberculosis infection using tuberculin data is not
always possible. Failures of the model to converge are frequent,
especially in areas where there is a moderate to strong influence
of cross-reactions and low prevalence of M. tuberculosis infec-
tion (12). An alternative method to estimate the prevalence of
M. tuberculosis infection was published by Rust and Thomas 40
years ago (19), using tuberculin data from US Navy recruits.
The authors stated that their proposed approach should “become
even more preferable in the years to come” (p. 320-321, 19)
because the prevalence ofM. tuberculosis infection would con-
tinue to decrease compared with the prevalence of infection
with environmental mycobacteria, which is likely to remain
constant.

We aimed to determine the prevalence of M. tuberculosis
infection and the ARTI in recently BCG-vaccinated preschool
children in rural Malawi using the model proposed by Rust and
Thomas.We compared these estimates with those derived using
the classical TST cutoff methods (indurations of ≥10mm or
≥15mm), fixed-mirror method (6, 20), and mixture analysis
(21–24).

METHODS

Study setting

Karonga district in northern Malawi is predominantly
rural, with an adult human immunodeficiency virus (HIV) prev-
alence around 9% and incidence of new smear-positive tubercu-
losis of 87/100,000 adults per year (25). BCG vaccination is
administered to children on first health system contact (usually
birth) as part of the Expanded Program on Immunization. The
whole population (approximately 39,000 people) in an area in
the south of the district is under demographic surveillance in
the Karonga Health and Demographic Surveillance System
(KHDSS) (26).

Study participants

Population at low risk of M. tuberculosis infection. We
conducted a population-wide TST survey in preschool children
in 2012, nested in the KHDSS. All children aged 3 months to 4
years, resident in the KHDSS area at the time of household
recruitment, were eligible to take part in the study.

Population at high risk of M. tuberculosis infection. We
also conducted a cross-sectional, household case-contact study
of tuberculosis throughout the district from January 2013 to
December 2014. Household contacts, including children aged
<5 years, of an adult with smear-positive pulmonary tubercu-
losis were tuberculin tested.

Study procedures

Field staff were trained in the placement and reading of
skin tests according to standard international guidelines (27).
Two international units of tuberculin purified protein deriva-
tive RT23 (Statens Serum Institut, Copenhagen, Denmark) were
injected into the volar surface of the forearm, and induration was
measured 48–72 hours later. The transverse and longitudinal dia-
meters of the induration were recorded to the nearest millimeter,
and an average was calculated (20).

Children with TST ≥10mm were assessed for tuberculosis-
related symptoms by field staff, and the results were recorded in
the child’s health passport. Any child with symptoms suggestive
of tuberculosis (fever, weight loss, failure to thrive, night sweats,
or cough) was reviewed by a clinician and referred to the district
hospital. All children with TST ≥15mmwere commenced on 6-
month isoniazid preventive treatment (10mg/kg once daily) after
active disease had been excluded.

Demographic data on sex, household size, household socioeco-
nomic status (using a composite score based on quality of dwell-
ing place, number of assets, employment of head of household,
food security, and availability of soap), and maternal HIV status
were collected for all study participants. HIV status of the child
was not ascertained unless clinically indicated. Written informed
consent was obtained from a parent or guardian of each partici-
pating child.

Both studies were approved by the Malawi National Health
Sciences Research Committee (study protocols #944 and #1049)
and the London School of Hygiene and TropicalMedicine ethics
committee (study protocols #6065 and #6285).

Statistical analyses

The frequency distributions of indurationwere tabulated using
2-mm categories to minimize the number of categories with no
data. We used 2 categories: 1) population at higher risk of
M. tuberculosis infection: children aged<5 years resident in the
household of an adult with smear-positive pulmonary tubercu-
losis; and 2) population at lower risk of M. tuberculosis infec-
tion: children aged <5 years resident in the KHDSS, excluding
20 childrenwho had known direct household contact with tuber-
culosis. We then used 4 methods to estimate the prevalence of
M. tuberculosis infection in both populations:

Rust and Thomas method. This method is based on the
distribution of induration size (mm) rather than a classification
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system of defining individuals as positive, negative, or doubtful.
The technique was originally applied to a well-defined popula-
tion of white male USNavy recruits aged 17–21 years, who had
been lifetime US residents. This population was then divided into
2 groups, those with known household exposure to a personwith
tuberculosis, based on self-report (defined as “high risk”), and
those without such exposure (defined as “low risk”).

The Rust and Thomas method is built on a simple mathe-
matical model. The underlying assumptions are:

• The population can be divided into 2 groups that differ
only in the prevalence of the infection.

• There is an identifiable category in which no individual
hasM. tuberculosis infection (TST = 0 mm).

• There is an identifiable category in which all individuals
haveM. tuberculosis infection (TST≥ n mm).

The rationale of the Rust and Thomas model is as follows: In a
hypothetical population without any M. tuberculosis infection,
the majority will have a TST of 0-mm induration. If sensitization
to environmental mycobacteria and/or recent BCG vaccination is
prevalent, reactions of moderate size will also occur. The distri-
bution of this population is called the “noninfected” distribution,
referring to the absence of infection withM. tuberculosis. Com-
parably, in a hypothetical population in which everyone has been
infected withM. tuberculosis, all but a few individuals will have
a fairly large reaction size, and a bell-shaped “infected” distribu-
tion will be observed. In an existent population, the observed dis-
tribution will be a combination of “infected” and “noninfected”
distributions. Thus, the observed “higher-risk” and “lower-risk”
groups are each a mixture of overlapping distributions of “infec-
ted” and “noninfected”. If one observed the “noninfected” popu-
lation alone, there would be a very large proportion with zero
induration, and the proportion of “noninfected”with small to
medium-sized reactions would depend on the prevalence of
nontuberculous mycobacterial infection and/or BCG-attributable
induration (i.e., the distribution of reaction size depends upon sen-
sitization to environmental mycobacteria or recent BCG vaccina-
tion but not upon contact status). Expressed in a different way, the
ratio of the proportionwith zero induration to the proportion “non-
infected” is constant (see equation 1 below) (19).

Similarly, the distribution of reaction sizes among those who
are truly infected is independent of contact status. Assuming that
there is a reaction size (n) abovewhich all individuals are infected,
the ratio of the proportion in category n to the proportion “in-
fected” is constant (see equation 2 below).

Equation 1 for a “noninfected” population:
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A TST reaction size of ≥20mmwas chosen as the category n
in which all individuals were assumed to have M. tuberculosis
infection. This categorywas chosen following examination of the
prevalence of infection calculated for different values of n. The
optimal choice was that category n in which the computed
prevalence is approximately the same as that for higher val-
ues of n (19). (SeeWeb Table 1 andWebAppendix 1, available
at https://academic.oup.com/aje, for details on the selection of the
reaction size of 20mm).

Bias-corrected 95%confidence intervalswere calculated using
a bootstrapping approach in Stata, version 14.1 (StataCorp LP,
College Station, Texas).

Fixedcutoff points at 10mmor 15mm. M. tuberculosis infec-
tion prevalence was calculated as the proportion of children with
a “positive”TST defined by cutoff points at≥10mmor≥15mm,
divided by the total number of childrenwith a TST result.

Fixed-mirror method (17mm). The fixed-mirror method
assumes that among individuals with M. tuberculosis infection,
the distribution of induration size is symmetric around a fixed
mode of 17mm, and that no nonspecific reactions, such as BCG-
attributable induration, reach 17mm (6, 20). Therefore all reac-
tions of 17mm were counted once, and indurations of >17mm
were counted twice and summed to obtain the estimated number
of M. tuberculosis infections. Prevalence was calculated as the
count of “M. tuberculosis infections” divided by the total number
of childrenwith TST results (24).

Mixture analysis. Mixture analysis of the tuberculin sur-
vey data, which is a form of latent variable modeling (18), was
based on implementation of the Bayesian Markov Chain Monte
Carlo approach in R (R Foundation for Statistical Computing,
Vienna, Austria) (28). Three parametric models (Weibull, log-
normal, and gamma distributions) were tested to determine the
best-fitting model using the maximum log likelihood function as
a guide. The quality of the fit was assessed by comparing pre-
dicted and observed frequencies via posterior predictive model
checks (24, 28).

Sensitivity analyses

The effect of neonatal BCG vaccination on TST indura-
tion, which is most pronounced in the first few months after
vaccination, is thought to wane rapidly (29, 30). The analysis
was repeated, stratifying children into age groups of<2 years
and 2–4 years, to assess the effect of BCG-attributable indu-
ration on estimates ofM. tuberculosis prevalence.

Am J Epidemiol. 2017;186(8):1015–1022

Challenges in the Estimation of ARTI in Children 1017

Downloaded from https://academic.oup.com/aje/article-abstract/186/8/1015/3836016
by London School of Hygiene & Tropical Medicine user
on 09 February 2018

https://academic.oup.com/aje


Annual risk ofM. tuberculosis infection

The ARTI, the probability of being infected in any one year,
was calculated using the formula (31):

≈ − ( − )PARTI 1 1 a1/

where P is the prevalence ofM. tuberculosis infection, and a is
the mean age of children. The ARTI was calculated only for the
children resident within the KHDSS, which was assumed to
be representative of the ARTI in children aged<5 years in the
district.

RESULTS

The frequency distribution of tuberculin data from the
lower-risk and higher-risk study populations are shown in
Table 1 and the Web Figures 1–4. Among all children <5
years of age, 85% of the lower-risk population had zero in-
duration compared with 56% of the higher-risk population
(P < 0.001). When stratifying by age, the proportion with
zero induration in the lower-risk group was 92% in those
aged 2–4 years compared with 73% in those aged <2 years.
In the higher-risk group the proportion with zero induration
was 54% in those aged 2–4 years and 60% in those <2 years.
There was no evidence that distribution of induration size
was affected by the HIV-exposure status of the child (χ2 test:
lower-risk group, P = 0.9; higher-risk group, P = 0.8).

Prevalence ofM. tuberculosis infection

Table 2 shows the estimated prevalence ofM. tuberculosis
infection using the different methods. In the lower-risk group

the estimates of infection prevalence were consistently high-
er among children less than 2 years of age compared with
those aged 2–4 years using all methods except for the Rust
and Thomas model. For children less than 2 years of age, the
estimates ranged from 0.7% to 11.5%; the mixture model
and the TST (≥10-mm cutoff) method estimated the highest
infection prevalence (11%–12%). Although the fixed-mirror
method and the Rust and Thomas method estimated similar
infection prevalences for children 2–4 years of age, among
children less than 2 years of age the infection prevalence esti-
mate using the fixed-mirror method was nearly 3 times that
of the Rust and Thomas method.

In the higher-risk group the estimates were higher among
children aged 2–4 years than among the youngest age group
for all methods. The estimates for the older age group in the
higher-risk group were similar for all methods, ranging from
39.9% to 42.5%, except for the TST (≥15-mm cutoff) method,
which estimated a prevalence of M. tuberculosis infection of
32%. The bias-corrected 95% confidence interval of Rust and
Thomas estimates for the higher-risk children less than 2 years
of age includes 0. This is likely to be a result of the small sample
size, n = 52, in this group.

Annual risk ofM. tuberculosis infection

ARTI estimates ranged from 0.3% (95% CI: 0.1, 0.9) to
2.6% (95% CI: 1.8, 2.7) depending on the method used to
estimate the prevalence of M. tuberculosis infection. The
Rust and Thomas model estimate was the most conserva-
tive at 0.3% (95% CI: 0.1, 0.9). It was also the method that
demonstrated the least difference in ARTI estimates when
stratified by age (see Table 3).

Table 1. Frequency Distribution of Tuberculin Data in Rural Children Aged Less Than 5 Years Stratified by Risk Group and Age, Karonga District,
Malawi, 2012–2014

Induration Size, mm

Frequency Distribution of Tuberculin Data

Lower-Risk Group Higher-Risk Group

All Aged<5
Years (n = 4,947)

Aged<2 Years
(n = 1,797)

Aged 2–4 Years
(n = 3,150)

All Aged<5
Years (n = 152)

Aged<2 Years
(n = 52)

Aged 2–4 Years
(n = 100)

No. % No. % No. % No. % No. % No. %

0 4,187 84.7 1,301 72.4 2,886 91.6 85 55.9 31 59.6 54 54.0

2–3 26 0.5 10 0.6 16 0.5 3 2.0 1 1.9 2 2.0

4–5 72 1.4 37 2.1 35 1.1 2 1.3 2 3.8 0 0.0

6–7 160 3.2 105 5.8 55 1.7 4 2.6 3 5.8 1 1.0

8–9 191 3.9 137 7.6 54 1.7 2 1.3 1 1.9 1 1.0

10–11 99 2.0 60 3.3 39 1.2 4 2.6 1 1.9 3 3.0

12–13 88 1.8 62 3.5 26 0.8 8 5.3 3 5.8 5 5.0

14–15 64 1.3 49 2.7 15 0.5 9 5.9 2 3.8 7 7.0

16–17 32 0.6 22 1.2 10 0.3 11 7.2 2 3.8 9 9.0

18–19 19 0.4 9 0.5 10 0.3 13 8.6 2 3.8 11 11.0

20–21 3 0.1 1 0.1 2 0.1 8 5.3 3 5.8 5 5.0

≥22 6 0.1 4 0.2 2 0.1 3 2.0 1 1.9 2 2.0
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DISCUSSION

Our findings highlight the challenges of using tuberculin sur-
veys to estimate the risk of M. tuberculosis infection in young
BCG-vaccinated children. ARTI estimates varied 5-fold depend-
ing on themethod used to estimateM. tuberculosis infection prev-
alence. The Rust and Thomas method generated a consistent
estimate of infection prevalence and ARTI, irrespective of age,
in a setting where sensitization to environmental mycobacteria
is known to be high (22) and over 90% of children are BCG-
vaccinated within 3months of birth. It was the onlymethod that
appeared to adjust appropriately for the marked effect of BCG-
attributable induration in the very young (aged<2 years).

The Rust and Thomas method protects against changes in
prevalence estimates caused by differences in strength of tuber-
culin used or the use of different equipment and/or techniques,
thus making it possible to compare M. tuberculosis infection
prevalence found by different investigators at varying times and
places (19). Because the Rust and Thomas method relies on the
distribution of induration in those known to have been exposed

to M. tuberculosis and the distribution of induration in those at
“lower” risk at the same point in time, as long as the same tuber-
culin and technique is used in both populations, the prevalence
estimates over time are much more likely to be comparable,
despite differences in geographical settings, climate zones,
changing BCG vaccination policies, and introduction of new
vaccines. In addition, the Rust and Thomas model can be used
to generate the probability of M. tuberculosis infection at each
induration size, thereby making it possible to calculate sensitiv-
ity and specificity, area under receiver operating characteristic
curve, and the positive predictive value of the TST in a given
population (14). Another advantage compared with traditional
cutoff methods is that prevalence estimates are less sensitive to
alterations in the chosen critical point. For the Rust and Thomas
method, this is the reaction-size category inwhich all individuals
are assumed to have M. tuberculosis infection. As long as this
reaction size exceeds the maximum reaction size occurring
among the “noninfected,” the calculated prevalence will be sub-
ject only to random fluctuations. However, if the reaction size is
too small, the basic assumption that all individuals with reactions

Table 2. Prevalence Estimates ofMycobacterium tuberculosis Infection Using Different Methods in Rural Children Aged Less Than 5 Years,
Karonga District, Malawi, 2012–2014

Estimation Method

Lower-Risk Group Higher-Risk Group

All Aged<5
Years (n = 4,947)

Aged<2 Years
(n = 1,797)

Aged 2–4 Years
(n = 3,150)

All Aged<5
Years (n = 152)

Aged<2 Years
(n = 52)

Aged 2–4 Years
(n = 100)

% 95%CI % 95%CI % 95%CI % 95%CI % 95%CI % 95%CI

TST cutoff, mm

≥10 6.3 5.6, 7.0 11.5 10.1, 13.1 3.3 2.7, 4.0 38.6 30.3, 47.5 26.9 15.6, 41.0 41.8 31.5, 52.6

≥15 1.9 1.6, 2.4 3.4 2.6, 4.3 1.1 0.8, 1.5 28.8 21.2, 37.3 17.3 8.2, 30.3 31.9 22.5, 42.5

Fixed-mirror method 1.3 1.0, 1.7 2.0 1.4, 2.7 1.0 0.7, 1.4 36.8 29.2, 45.0 26.9 15.6, 41.0 42.0 32.2, 53.3

Mixturemodel 6.4 3.4, 9.9 12.4 4.4, 19.3 1.9 0.03, 4.7 33.4 24.2, 43.1 27.6 4.4, 47.8 39.9 24.4, 49.9

Rust and Thomasmodel 0.9 0.3, 2.4 0.7 0.1, 4.6 0.8 0.2, 2.6 34.5 25.6, 43.8 18.2 0.0, 35.8 41.5 30.2, 51.8

Abbreviations: CI, confidence interval; TST, tuberculin skin test.

Table 3. Estimates of Annual Risk ofMycobacterium tuberculosis Infection Based on Prevalence Estimates of
M. tuberculosis Infection in the Children Under 5 Years of Age Resident in a Demographic Surveillance Area,
Karonga District, Malawi, 2012–2014

Method

Annual Risk ofM. tuberculosis Infection

All Aged<5 Years Aged<2 Years Aged 2–4 Years

% 95%CI % 95%CI % 95%CI

TST cutoff, mm

≥10 2.4 1.8, 2.7 10.2 6.3, 11.6 1.0 0.7, 1.2

≥15 0.7 0.5, 0.8 3.0 2.3, 3.8 0.3 0.2, 0.4

Fixed-mirror method 0.5 0.4, 0.7 1.8 1.2, 2.4 0.3 0.2, 0.4

Mixturemodel 2.6 1.4, 4.0 10.5 3.2, 17.1 0.6 0.1, 1.4

Rust and Thomasmodel 0.3 0.1, 0.9 0.6 0.1, 4.1 0.2 0.1, 0.8

Abbreviations: CI, confidence interval; TST, tuberculin skin test.
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of that size or larger have been infected with M. tuberculosis
will not be fulfilled, and the estimated infection prevalence will
therefore overestimate the true prevalence (19).

One of the reasons the Rust and Thomas method has been
apparently forgotten may be the requirement of tuberculin data
from “low-risk” and “high-risk” groups. The assessment of US
Navy recruits, used in the original study, used self-report of
household contact with an individual with tuberculosis (32). In
our study, we combined tuberculin data from a TST survey con-
ducted in a demographic surveillance area with data from a con-
current case-contact household study of tuberculosis in the whole
district. The demographic surveillance area may not be represen-
tative of the whole district: Research has been conducted in
KHDSS for the last 12 years, which may have influenced health-
seeking behavior, which in turnmay affectM. tuberculosis trans-
mission dynamics in the area. One of the major assumptions of
the Rust and Thomasmodel is that the “high risk” and “low risk”
populations differ only with respect to contact status and there-
fore prevalence of infection. Reassuringly, the 2 groups in our
study did not differ significantly with regard to age, sex, house-
hold size, household socioeconomic status, and maternal HIV
status (seeWebAppendix 2 andWeb Table 2).

In the lower-risk group in our study, the proportion of children
with a TST≥20mm (our chosen nth category)was larger among
children under 2 years of age (0.5%) than among those of ages
2–4 years (0.2%). If this is not due toM. tuberculosis infection, it
would violate the assumption that only those truly infected are
included in the nth category and would therefore overestimate
the infection prevalence. Similarly, for the fixed-mirror method,
any induration size ≥17mm due to BCG-attributable induration
rather than trueM. tuberculosis infection prevalence would over-
estimate infection prevalence. Very large induration secondary
to BCG vaccination is more likely to occur among children less
than 2 years of age who have been more recently vaccinated.
Interestingly, a Taiwanese study that proposed age-specific cut-
offs to detect M. tuberculosis infection in children suggested a
cutoff of 21mm for infants aged less than 2 years (33).

Data in the larger-induration (>20 mm) categories were
sparse, andmisclassification of a small number has a large effect
on the resultant proportion in the nth category, which is a limita-
tion of the data. The 95% confidence interval of the prevalence
ofM. tuberculosis infection among the higher-risk children aged
<2 years using the Rust and Thomas method included 0, also
underscoring the importance of an adequate sample size. A simi-
lar study among older children, adolescents, and young adults—
who are likely to be at greater risk forM. tuberculosis infection
than are young children (20, 34, 35)—would be useful to assess
the robustness of the Rust and Thomas method. It would require
a household contact study aswell as a “low-risk” population sur-
vey, whichwould have cost implications.

Our findings present evidence that the Rust and Thomas
method appears to address the effect of recent BCG vaccination
among children under 2 years of age. Among the older children,
the results of the different methods vary less and are all likely to
be plausible, but because theRust and Thomasmethod performed
more appropriately in dealing with the cross-reactions due to
BCG in the younger age group, we can have confidence that it
is dealing appropriately with cross-reactivity in the older age
group as well.

Onemight ask why we should continue to advocate the use of
tuberculin in an era of more specific diagnostics, such as IGRAs,
and newer skin tests, such as the C-Tb skin test, a novel skin test
containing ESAT-6 and CFP-10, antigens that are specific toM.
tuberculosis (36). The latest skin tests, for which there are cur-
rently limited data, do appear to offer higher specificity than
tuberculin, but this might come at the cost of reduced sensitivity
(37). The cost, technical complexity, and the requirement of lab-
oratory infrastructure in order to undertake large IGRA surveys
usually preclude population-level studies. However, IGRA sub-
studies nested within tuberculin surveys could potentially be
used to refine estimates of M. tuberculosis infection prevalence
(12, 38, 39), although it is not clear how discrepancies between
TST and IGRA should be interpreted. In longitudinal studies,
IGRA and TST responses seem to convert and revert at different
rates, so the 2 tests are unlikely to give the same assessment of
infection in any population (40, 41).

We wanted to estimate the ARTI in preschool children based
on the rationale that determination of the average ARTI in the
very young provides a critical indicator of the extent of recent
M. tuberculosis transmission. It is important to bear in mind that
risk of M. tuberculosis infection is not independent of age (20,
34, 42) and is most likely related to M. tuberculosis exposure
through age-assortative social mixing (43). Thus the average
ARTI in the youngest within a population is unlikely to be repre-
sentative of the ARTI in those that are older, but it does provide
the most contemporary marker of recent M. tuberculosis trans-
mission. Repeated tuberculin surveys in the youngest generation
could potentially be used to assess whether implementation of
tuberculosis-control strategies within the community have re-
sulted in a decrease of recentM. tuberculosis transmission (11).

In conclusion, there is unequivocally a need for more accurate
epidemiologic indicators of M. tuberculosis transmission and M.
tuberculosis infection prevalence estimates in order to understand
the dynamics of tuberculosis epidemiology in varying settings
(44). In our study, the Rust and Thomas method was the only
method to find a lower estimate in the youngest age group, sug-
gesting that it accounted appropriately for the cross-reactivity due
toBCGvaccination.
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