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ABSTRACT

Background: Pneumococcal conjugate vaccines have reduced the incidence of invasive pneumococcal disease,
caused by vaccine serotypes, but non-vaccine-serotypes remain a concern. We used whole genome sequencing
to study pneumococcal serotype, antibiotic resistance and invasiveness, in the context of genetic background.
Methods: Our dataset of 13,454 genomes, combined with four published genomic datasets, represented Africa (40%),
Asia (25%), Europe (19%), North America (12%),and South America (5%). These 20,027 pneumococcal genomes were
clustered into lineages using PopPUNK, and named Global Pneumococcal Sequence Clusters (GPSCs). From our
dataset, we additionally derived serotype and sequence type, and predicted antibiotic sensitivity. We then measured
invasiveness using odds ratios that relating prevalence in invasive pneumococcal disease to carriage.

Findings: The combined collections (n = 20,027) were clustered into 621 GPSCs. Thirty-five GPSCs observed in our
dataset were represented by >100 isolates, and subsequently classed as dominant-GPSCs. In 22/35 (63%) of
dominant-GPSCs both non-vaccine serotypes and vaccine serotypes were observed in the years up until, and in-
cluding, the first year of pneumococcal conjugate vaccine introduction.

Penicillin and multidrug resistance were higher (p <.05) in a subset dominant-GPSCs (14/35, 9/35 respectively),
and resistance to an increasing number of antibiotic classes was associated with increased recombination (R? =
0.27 p <.0001). In 28/35 dominant-GPSCs, the country of isolation was a significant predictor (p <.05) of its
antibiogram (mean misclassification error 0.28, SD 4 0.13).

2352-3964/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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We detected increased invasiveness of six genetic backgrounds, when compared to other genetic backgrounds ex-
pressing the same serotype. Up to 1.6-fold changes in invasiveness odds ratio were observed.
Interpretation: We define GPSCs that can be assigned to any pneumococcal genomic dataset, to aid international
comparisons. Existing non-vaccine-serotypes in most GPSCs preclude the removal of these lineages by pneumo-
coccal conjugate vaccines; leaving potential for serotype replacement. A subset of GPSCs have increased resistance,
and/or serotype-independent invasiveness.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

Research in context
Evidence before this study

We searched PubMed using the terms “Streptococcus
pneumoniae” OR “pneumococcus” AND “genome sequencing” OR
“invasiveness disease potential” AND “genotype” OR “clone”, for
papers published in English between Jan 1, 2000, and Aug 21,
2018. Whole genome sequencing of pneumococci has mainly
been used for detailed characterisation of strains or lineages.
While pneumococcal population structure influences pneumococ-
cal conjugate vaccine impact, only a small number of in-depth de-
scriptions have been performed using species-wide genomic
surveys of carriage or disease: Maela, Thailand [3085 isolates],
Southampton UK [672 isolates], Massachusetts US [616 iso-
lates], Blantyre, Malawi [585 isolates], Nijmegen, The
Netherlands [346 isolates]. These studies all used Bayesian Anal-
ysis of Population Structure, which provides robust but dataset
specific clustering. Publications over the last 15 years have peri-
odically indicated that genotype influences invasiveness, for
some pneumococcal lineages, but this subject has received little
attention relative to serotype.

Added value of this study

An international genome-based scheme for defining pneumococ-
cal population structure, allowed us to characterise and compare
lineages across countries, giving international context to sero-
type, antibiotic resistance and geographical spread. This study
uses GPSC definition of genotype to measure invasiveness,
adding to the evidence that genotype can influence invasiveness.

Implications of all the available evidence

An international definition of pneumococcal population structure,
unifies current and future genomic collections, facilitating compar-
isons. Increasing knowledge of geographical spread, distribution
of antibiotic resistance, existence of non-vaccine-type variants
and the invasive contribution of genotypes, provides useful con-
text for assessing PCV impact. The generated genomic data offers
a considerable resource, to further investigate the biology behind
key themes in global control of pneumococcal disease.

1. Background

Pneumococcal conjugate vaccines (PCVs) are highly effective in the
prevention of invasive pneumococcal disease, caused by vaccine sero-
types [1]. PCVs with seven, 10 or 13 conjugated serotypes are in use in
~150 countries [2]. Further conjugate vaccines are in development in-
cluding PCV15 (Merck) [3] and a 20-valent formulation (Pfizer) [4],
both in phase III clinical trials. Young children are the main carriers of

Streptococcus pneumoniae, and immunisation of this age group protects
them against invasive pneumococcal disease (IPD), caused by vaccine
serotypes. Replacement of vaccine serotypes in carriage and disease
by non-vaccine serotypes, termed serotype replacement, has offset
some of the disease reductions in vaccinated and unvaccinated age
groups [5,6]. The pneumococcal capsular polysaccharides are used to
classify the pneumococcus into ~100 serotypes based on antibody bind-
ing to specific epitopes. Serotype is considered the primary pneumococ-
cal virulence determinant [7].

Pneumococcal population structure can be characterised using
multi-locus sequence typing (MLST), that determines the sequence var-
iation in seven housekeeping genes. At least one MLST gene (ddl) has
been linked to a known recombination hotspot in pneumococci [8].
MLST is limited in its ability to infer relationships between all strains
[9], as shared ancestry can be masked by recombination and variation
that has accumulated over longer timescales. Whole genome sequenc-
ing has increased resolution, allowing relationships between strains
across the species to be established. Public health bodies are now taking
steps to integrate pneumococcal whole genome sequencing into routine
microbiology. Public Health England and the Centers for Disease Control
and Prevention, have published methods using pneumococcal whole
genome sequencing for determining serotype, and predicting antibiotic
susceptibility [10,11].

Multiple studies have used pneumococcal genomics to investigate
PCV impact [12-15]. They often cluster the population into groups
using genomic variation that reflects a shared evolutionary history. To
date, these genomic definitions of lineages have been dataset-specific,
unlike MLST, hindering their use when comparing studies. The Global
Pneumococcal Sequencing project (GPS, http://www.pneumogen.net/
gps/), aims to provide an international understanding of pneumococcal
population structure and PCV impact. It includes pneumococcal collec-
tions from invasive disease, and asymptomatic carriage. Multiple low-
and middle-income countries are represented, and where possible,
samples collected before and after PCV introductions. We aimed to use
genome-wide variation to capture signals of shared descent, and define
Global Pneumococcal Sequence Clusters (GPSCs). We used the GPSCs to
provide further context on the distribution of serotypes, antibiotic resis-
tance and invasiveness across pneumococcal lineages, which can aid as-
sessments of PCV-impact [16,17].

2. Methods
2.1. Study design

We included 13,454 pneumococcal genomes available from the on-
going GPS project by June 2017. Investigators from each country pro-
vided epidemiological information including clinical manifestation,
host age group, isolation year and sample source (Supplementary T1).
IPD isolates were from a normally sterile site, while carriage isolates
were from nasopharyngeal or nasal swabs. Participating laboratories
performed antibiotic susceptibility testing where facilities allowed. We
interpreted the susceptibility data as SIR (susceptible, intermediate, re-
sistant) using Clinical Laboratory Standard Institute (CLSI) M100-
ED28:2018. We applied the meningitis threshold for penicillin on all
isolates, to allow assessment and comparison of penicillin resistance
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between GPSCs. Phenotypic antibiotic susceptibility data were available
for <50% of isolates. This available data could be used to assess the sen-
sitivity and specificity of genotypic prediction, and the validity of gener-
ating new, genome-derived, susceptibility data for several countries.
The pre-PCV period was defined as the years when no conjugate vaccine
was used and the year of first PCV introduction in each country.

2.2. Whole genome analysis

The following whole genome analyses are expanded in Supplemen-
tary Methods. Briefly, isolates were Illumina sequenced and raw data,
assembled [18] and deposited in the European Nucleotide Archive (Sup-
plementary T1). We derived MLST sequences types (STs) and serotype
from the genome [19,20]. We further screened for the presence of
known resistance conferring genes and mutations - for penicillin, tetra-
cycline, erythromycin, chloramphenicol, co-trimoxazole - in the CDC
pneumococcal typing pipeline database [11,21,22]. References to sero-
type and resistance throughout are from genomic inference. Multidrug
resistance was defined as predicted resistance to > 3 antibiotic classes.

To define GPSCs and improve global representation, the GPS dataset
(n = 13,454) was supplemented with published datasets from the
Netherlands (n = 2803), Thailand (n = 2663), USA (n = 616) and UK
(n = 491) (Supplementary T2). We used PopPUNK to group isolates
from this combined dataset (n = 20027) into lineages, which clusters
them using core and accessory distances (Fig. S1) [23]. We coined
these lineages Global Pneumococcal Sequence Clusters (GPSCs), and
created a reference database - available at https://www.pneumogen.
net/gps/assigningGPSCs.html - that can be used with popPUNK to as-
sign the GPSCs to new data. HierBAPS was used as a clustering compar-
ator [24]. It was run on a SNP alignment generated by mapping GPS
isolates to ATCC 700669. Recombination was quantified among core
genes using FastGEAR on a representative set of STs (Supplementary
T3). Recombination within each dominant-GPSC was quantified
using Gubbins after mapping to a GPSC specific reference (Supplemen-
tary T4) [25,26]. Pairwise SNP distances were calculated for a core
gene alignment of the GPS dataset generated via Roary [27], and
for recombination-free alignments per dominant-GPSC, using the
Pairsnp-r R package.

2.3. Statistical analysis

Estimates of the number of GPSCs in the true population were
modelled using the R Vegan package [28]. Simpson's Diversity index
1-D (SDI) reports no diversity (zero) to unlimited diversity (one). We
tested the predictive value of dominant-GPSCs, for antibiogram or sero-
type. We then tested the predictive value of country, for antibiogram or
serotype, within each dominant-GPSC. We compared multinomial lo-
gistic regressions to null models using a likelihood ratio test. Input
data was restricted to the un-perturbed pre-PCV population. Correc-
tions for multiple testing (n >10) used the Benjamini-Hochberg false
discovery rate of 5%. Pneumococcal heritability (h?) of invasiveness
was calculated with a regression of all genomic variation using Pyseer
[29] on South African isolates, from children <7 years of age in which
variation in invasiveness is limited (Supplementary T5) [30]. The ex-
planatory value of serotype for invasiveness was measured using
Nagelkerke's pseudo-R? [31]. Quantification of invasiveness was per-
formed using odds-ratios (OR) for invasive disease where prevalence
in invasive disease was related to their prevalence in carriage. We per-
formed an OR meta-analysis of data from South Africa (national IPD n
= 625, carriage; Agincourt n = 798, Soweto n = 291) and USA (na-
tional IPD n = 456, carriage Massachusetts n = 345), using individuals
<7 years old (Supplementary T6). The Cochran's Q-test was used to de-
tect heterogeneity by country within estimated ORs. The (log) odds
ratio for invasive disease used Peto's method where a is the number of
invasive isolates of X, where X denotes a particular serotype, genotype
or serotype-genotype, b is the number of carriage isolates of X, c is the

number of non-X invasive isolates, and d is the number of non-X car-
riage isolates, in line with previous work by Brueggemann et al [7]. Mea-
suring differences in the proportion of IPD cases to carriage were
performed between the pairs of most and least invasive genotypes,
using the OR dataset from the country (USA or South Africa) they
were predominantly observed. These statistical analyses are expanded
in Supplementary Methods.

3. Findings

Our GPS dataset included 13,454 isolates representing 30 countries,
and 5 continents: Africa (13 countries, 59% of collection), Asia (8, 18%),
South America (2, 8%), Europe (4, 3%) and North America (3, 12%). GPS
key countries (n>1000) included South Africa (n = 4615, 63% IPD), The
Gambia (n = 1647, 24% IPD), Malawi (n = 1304, 43% IPD), Israel (n =
1143, 100% IPD) and USA (n = 1584, 100% IPD). Sixty-four percent of
the collection were isolated from IPD, 96% of the collection were isolated
between 2000 and 2017 and 74% were from children aged <5 years old
(Table 1, Fig. S2).

Genome-wide variation in our dataset combined with published col-
lections (total n = 20,027) clustered isolates into 621 GPSCs (Fig. S3).
Our 621 GPSCs represent over 61% of the 1012.7 GPSCs (SE +76) esti-
mated to be in the true population. However, most GPSCs (407 of 621,
66%) were rare lineages with <10 isolates, together representing 1043
of 20,027 (5%) of the combined collection. Within the GPS dataset, we
observed 538 GPSCs. 35 GPSCs had >100 isolates in the GPS dataset
and were classified as dominant-GPSCs. Together they represented
8356 of 13,454 (62%) of the GPS dataset, and 5978 of 8605 (69%) of
the GPS dataset disease isolates (Fig. S4). Sampling multiple countries
detected significantly more GPSCs (p <.0001) than equivalent sampling
from a single location (Fig. S5).

We defined MLST Clonal Complexes (CC) as STs with single locus
variant (SLV) differences, within the GPS dataset. GPSCs often
encompassed related CCs, with a mean number of 2.6 CCs per
dominant-GPSC (SD +1.5, excluding singleton STs). GPSCs identify a
shared history not captured by CC designations. CC217, CC615,
CC3581 and 2 singleton STs were clustered into GPSC2, a grouping of
CCs which is widely recognised as a clonal lineage that expresses sero-
type 1. CCs captured phylogenetic sub-structure well in dominant-
GPSCs with more than 1 CC (n = 25, mean Consistency Index 0.9864
SD + 0.04, mean Retention Index 0.9942 SD + 0.02). Our clustering ad-
ditionally revealed shared descent of CC53, CC1012, CC62 and CC100
within GPSC3, that shared 0-5 MLST alleles. HierBAPS supported the
clustering of 28/35 (80%) dominant-GPSCs, including GPSC3. The
species-wide, core genome, pairwise SNP distances between GPSCs
and within GPSCs, were predominantly non-overlapping (Fig. 1). The
mean pairwise SNP distances from recombination free alignments,
were broadly comparable between dominant-GPSCs, though eight
GPSCs had SNPs distances of >500 for a subset of their isolates (Fig. 2).
HierBAPS supported half of those clusters with >500 SNP distances,
but GPSC18, GPSC23, GPSC37 and GPSC41 were split into two sub-
clusters. Conversely GPSC1, the clonal serotype one lineage GPSC2 and
GPSC16 were split by HierBAPS into two sub-clusters even when the
maximum SNP distances were <500.

MLST genes gki, gdh, recP, spi and ddl ranked in the top 6-22% of the
1193 core genes, for recombination frequency (Supplementary T7). Dis-
ruption of vertical inheritance may result in isolates that are missed by
CC: within the dominant-GPSCs 370 of 8356 isolates (4.4%), belonging
to 165 STs, were not assigned to a CC. Conversely recombination can re-
sult in convergent MLST profiles in disparate isolates, and CC designa-
tion using large collections are more vulnerable to spurious
connections. Sixteen CCs spanned multiple related GPSCs and 24 iso-
lates were assigned to 6 CCs highly discordant with their core genome
phylogenetic relationship (Fig. S6).

Geographical diversity varied considerably per GPSC (Fig. 3A),
though all dominant-GPSCs were observed in more than one country.
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Table 1
Clinical characteristics, age group, sex, clinical manifest and sample source, PCV period.

Category <2 3-5 6-15 16-24 25-44 45-65 >65 Total
Total 7179 2790 1061 398 982 602 442 13,454
Sex
F 2863 972 440 214 502 173 89 5253
M 3288 1067 486 150 343 209 117 5660
Missing 1028 751 135 34 137 220 236 2541
Manifest
Carriage 2841 935 646 223 173 25 6 4849
Disease 4338 1855 415 175 809 577 436 8605
Source
Blood 2998 1234 256 93 471 404 332 5788
CSF 1070 444 135 67 290 132 55 2193
Nasopharynx 2841 934 646 223 173 25 6 4848
Other disease 256 173 24 15 45 38 46 597
(non-invasive)
Missing 14 5 0 0 3 3 3 28
PCV period
Pre-PCV 3925 1439 671 250 418 230 177 7110
Post-PCV7 1355 547 153 52 211 143 113 2574
Post-PCV10 131 44 13 7 22 44 12 273
Post-PCV13 1592 671 210 86 314 177 131 3181
No universal 176 89 14 3 17 8 9 316
introduction of
PCV

Isolates were classified by PCV use in the country and year of their isolation. The pre-PCV
period was defined as the years when no conjugate vaccine was used and the year of first
PCV introduction, the post-PCV7 period from the second year of PCV7 introduction
through to the first year of PCV10 introduction, the post-PCV10 period from the second
year of PCV10 introduction through to the first year of PCV13 introduction and the post-
PCV13 period from the second year of PCV13 introduction through to the last collection
year. No universal introduction of PCV denotes years in which a nationwide immunisation
policy did not exist.

Eight of 35 (23%) had high geographical diversity (SDI >0.70)
representing even distribution across 5 continents (Supplementary
T8). Conversely, seven of 35 (20%) dominant-GPSCs were observed
only in Africa.

Genomic inference of serotype was reliable with 97% (95% ClI
97.15-97.75%) serotype co-concordance with available phenotypic
data (n = 10,466, Supplementary T9). Of 35 dominant-GPSCs, 30
(86%) were observed with more than one serotype. Dominant-GPSC
was a significant predictor of serotype with a mean misclassification
error of 0.18, although serotype diversity within dominant-GPSCs var-
ied considerably (p <.0001), Fig. 3B). Country was a significant predic-
tor of serotype within 18 of 35 dominant-GPSCs (51%) with a mean
misclassification error of 0.19 (SD + 0.14, p <.05). For example, in
GPSC3, serotype 8 was expressed in 113 of 148 (76%) IPD isolates
from South Africa and all were CC53, conversely, serotype 33F was
expressed in 49 of 87 IPD isolates from the USA and 44 of 49 (90%)
were CC100/ST2705.

Two of the 35 dominant-GPSC (6%, GPSC14, GPSC37) included iso-
lates exclusively expressing PCV7-serotypes pre-PCV and therefore
were completely covered by PCV7. However, GPSC14 and 37 accounted
for only 169 of 4221 (4%) of pre-PCV disease isolates. The number of
dominant-GPSCs expressing only VTs pre-PCV, increased to 6 GPSCs
for PCV10 (885 of 4221 [21%] of pre-PCV IPD isolates), and 11 GPSCs
for PCV13 (1234 of 4221 [29% pre-PCV IPD]; Fig. 4A). The experimental
15-valent vaccine offered no additional dominant-GPSCs expressing
only VTs. The putative 20-valent formulation meant that a further four
dominant-GPSCs were expressing only VTs pre-PCV (1592 of [37%] of
pre-PCV IPD isolates).

Of the 35 dominant-GPSCs, 22 (63%) expressed non-vaccine sero-
types (NVT) alongside PCV13 serotypes prior to PCV introductions.
Though there were wide variations in the ratio of VT:NVT expressed
(Fig. 4B). Of the 22 GPSCs, 12 (55%) predominantly expressed VTs.
NVT-variants were not observed in all locations, in South Africa, 17 of
34 (50%) GPSCs with 10 or more isolates pre-PCV (n = 1534), expressed
both PCV13 and NVTs pre-PCV. There were two dominant and 60

intermediate GPSCs expressing only NVTs, respectively they accounted
for 20 of 4221 (0.5%) and 208 of 4221 (5%) of IPD isolates pre-PCV.

The positive predictive values for genetic determinants of resistance
to penicillin, tetracycline, erythromycin, chloramphenicol, and co-
trimoxazole were all >90% (95%CI 90-98.7%, Supplementary T10). Re-
sistance to at least one antibiotic class was predicted for 8241 of
13,454 isolates in the GPS dataset (61%; Fig. S7). The percentage of iso-
lates predicted to be resistant per class was not uniform across
dominant-GPSCs (Fig. 5). The predicted resistance profile of an isolate
could be predicted by which dominant-GPSC it belonged to half of the
time, (p <.0001, misclassification error 0.49). Generally, higher recom-
bination ratios (rho/theta, r/m), were associated with a higher mean
number of classes of predicted antibiotic resistance (rho/theta R? =
0.27, p <.0001, r/m R*> = 0.22, p <.0001, Supplementary T8 and T11).
GPSC1 had an above average r/m (8.3) and rho/theta (0.14) and a pre-
dominant predicted MDR antibiogram of penicillin, co-trimoxazole,
erythromycin and tetracycline resistance, but susceptibility to chloram-
phenicol, occurring in 388 of 504 isolates (77%). Although this MDR
antibiogram was the most common pattern in 17 of 19 countries repre-
sented in GPSC1, country was a predictor of the antibiogram for 28 of
the 35 dominant-GPSCs (80%; p < .05, mean misclassification error
0.28, SD =+ 0.13). Predicted penicillin resistant isolates accounted for a
higher proportion of isolates within 14/35 dominant-GPSCs than ex-
pected given proportion of predicted penicillin resistance in the rest of
the GPS dataset (p < .05, 63-100%, Supplementary T12). Predicted mul-
tidrug resistant isolates, accounted for higher proportion of isolates
within 9/35 dominant-GPSCs than expected (p < .05, 45-77%). Eight of
these were GPSCs also found to have a higher proportion of isolates pen-
icillin resistant isolates (Supplementary T13). Prior to PCV introduc-
tions, penicillin resistance was predicted to occurred in 2133 of 4975
(43%) of the isolates expressing PCV13 VTs and in only 256 of 2135
(12%) of the NVT expressing strains (p <.0001).

In 9 of the 22 (40%) GPSCs expressing both VT and NVT, the NVT
component had a significantly lower proportion of predicted resistant
isolates than their VT counterparts (Supplementary T14). Seven inter-
mediate GPSCs expressing only NVTs had >90% of isolates predicted re-
sistant to penicillin (GPSC55, 89 of 90, [99%]; GPSC59, 37/37 of [100%];
GPSC81, 35 of 38 [92%]; GPSC132, 17 of 17, 100%]; GPSC136, 19 of 21
[90%]; GPSC168, 15 of 15 [100%]; GPSC200, 11 of 11 [100%]).

In the South African heritability dataset, serotype explained a
third of the strain variation in clinical manifestation (carriage or dis-
ease, pseudo-R? 0.32). Total pneumococcal genetic variation
(including the cps locus which encodes the CPS) was a better expla-
nation (h% 0.57), explaining over half of the variation in clinical man-
ifestation, leaving some invasiveness explained by genes outside the
cps locus.

The 95% (I, for invasiveness ORs did not overlap between at least one
pair of genotypes (GPSC n = 96, ST n = 112) within serotypes 6A, 14,
16F, 19F, 23B and 23F (Table 2, Fig. S8). Only within GPSC14 was a geno-
type with increased invasiveness found to be significant at the ST level
but not the GPSC level, as ST6279 and ST2059, both found within
GPSC14, significantly differed in invasiveness (Table 2, Supplementary
T15 and T16). We detected significant heterogeneity in invasiveness
for serotype 38-GPSC38/ST393 (Q = 3.877[df 1], p <.05), between
South Africa (OR 0.67, 95%CI 0.24-1.88) and the USA (OR 6.83, 95%CI
0.86-54.20) in the meta-analysis estimate of the OR. Despite the small
sample numbers, the two countries significantly differed in the propor-
tion of serotype 38-GPSC38 from IPD (p = .008). A conservative com-
parison using the upper CI of the least invasive genotype and the
lower CI of the most invasive genotype had 1.05 to 1.6-fold changes in
OR (Table 2). The influence of genotype on invasiveness can be of a sim-
ilar magnitude to some serotypes. For example a 1.6-fold change was
observed between the upper CI of the less invasive serotype 35A (0.12
[0.016-0.938], p = .043) and the lower CI of the more invasive serotype
18C (3.237[1.514-6.921], p = .0024) determined in this dataset
(Supplementary T17).
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Pairwise core SNP distances between and within GPSCs
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Fig. 1. Pairwise core SNP distances between and within GPSCs. Pairwise SNP distances, from a core alignment generated using Roary, between isolates in different GPSCs (left) are generally

greater than pairwise SNP distances for isolates within the same GPSC (Right).

4. Discussion

We present the distribution of key themes in pneumococcal disease
control, such as serotype, antibiotic resistance and invasiveness, in a
large international collection. We used genome-wide variation to define
Global Pneumococcal Sequence Clusters (GPSCs), to produce a dataset
independent genomic definition of lineages. Increasing knowledge of
the spread of traits across the pneumococcal population and geograph-
ical regions, gives greater context for assessing the impact of PCV
introduction.

Pairwise SNP distances within GPSCs after recombination removed

1500+

1000~

500- r

BARRTEYIIK

3 12

mutations

i 3

'
Pretetvattesitite,

At an international level, we have shown that pneumococcal non-
vaccine serotypes exist alongside vaccine serotypes, within dominant
GPSCs that account for the majority of the pneumococcal population.
The existence of non-vaccine serotype variants negates reliance on con-
temporaneous capsule switch events for “vaccine escape” of a GPSC.
Given that the pneumococcus has multiple lineages that are globally
disseminated there is potential for non-vaccine types established in
one geographical region to spread globally, or be present but unde-
tected in other countries [32]. Indeed, previous carriage studies have ob-
served the importation of lineages not previously observed in that
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Fig. 2. Pairwise SNP distances within dominant-GPSCs. Violin plots of pairwise SNP distances within the 35 dominant-GPSCs after recombination removed from an alignment from

mapping to an internal reference for each GPSC are largely comparable.
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location, and further estimated that the influx of new lineages would re-
sult in a 50% population turnover after 13 years [16,33].

We showed that antibiotic resistance was enriched in a subset of
GPSCs, many of which were dominant and globally disseminated. We
observed that both GPSC, and country within GPSCs were significant
predictors of the antibiotic resistance pattern of an isolate. GPSCs with
an increased propensity for resistance, whether associated with in-
creased capacity for recombination, duration of carriage [34], can spread
to other locations. Loss of resistance, in the absence of selection, has
been reported for lineages in countries with lower antibiotic prescrip-
tion rates; multiple independent losses of resistance to chlorampheni-
col, tetracycline and erythromycin were observed for Pneumococcal
Molecular Epidemiology Network (PMEN)2 in Iceland [35]. However,
over a decade after a reduction in antibiotic consumption, the majority

PCV13—unique

NVTs

PCV7

PCV10—unique

of Icelandic PMEN2 remained resistant, albeit at a reduced prevalence,
and as such lineages remain a risk to high usage settings. Antibiotic re-
sistance is lower in non-vaccine serotypes, but this prevalence varies
substantially by GPSC. Some notable GPSCs expressing only non-
vaccine serotypes do have high levels of penicillin resistance, and within
GPSCs that express both non-vaccine and vaccine serotypes, the non-
vaccine serotypes occasionally have similar or higher resistance profiles
to their vaccine serotype counterparts.

Preservation of gene frequencies in the population through negative
frequency-dependent selection has been shown to exist in pneumo-
cocci, and can be used to predict serotype replacement in carriage
[16,36]. This suggests that the gene content of a GPSCs influences
whether it will undergo replacement or expansion after vaccine pertur-
bation. Only genomic data combined with a robust clustering method
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Fig. 4. PCV composition of dominant Global Pneumococcal Sequence Clusters (GPSCs). (A) Venn diagram of the number of dominant-GPSCs (n = 35) in which combinations of PCV7 VTs,
PCV10/13 unique VTs and NVTs were observed in the same GPSC pre-PCV. Over one-third (15/35) of the dominant-GPSCs expressed both PCV7 (blue), PCV13-unique (purple) and NVT
(orange) pre-PCV, shown in the overlap. Whilst 24/35 dominant-GPSCs had at least one isolate expressing an NVT pre-PCV (orange area). (B) PCV13 VT contribution to GPSCs pre-PCV.
Each point represents a dominant-GPSC (n = 35) and the percentage of its pre-PCV isolates expressing PCV13-VTs, with boxplot of minimum, first quartile, median, third quartile, and

maximum values.
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has the power to model such complex dynamics. Non-vaccine and vac-
cine serotypes within the same GPSC, will share similar gene comple-
ments and ecological phenotypes, including resistance. Non-vaccine
variants may therefore have increased potential to replace their
vaccine-type counterparts compared to other GPSCs expressing non-
vaccine serotypes [13,37]. The GPSCs involved in any replacement will
determine the extent to which reductions, not only in total disease,
but in antibiotic resistance, could be partially offset by non-vaccine se-
rotypes. This has been observed with pneumococcal serotype replace-
ment after routine use of the 7-valent conjugate vaccine by multidrug
resistant 19A in the US within GPSC1(CC320), which slowed reductions
in total disease, antibiotic resistance, and subsequently, the cost effec-
tiveness of PCV7 [38].

Serotype is a potent virulence determinant, however other virulence
factors exist in the genome outside of the cps locus. Genotypes have pre-
viously been implicated in invasiveness in a number of small studies
using MLST/pulsed-field gel electrophoresis definitions, some of which
are complicated by age-related differences in invasiveness [30,39-41].
With a substantial collection of pneumococcal genomes, we have used
heritability analysis and difference in invasiveness ORs to demonstrate
that genome variation beyond serotype contributes to invasiveness in
children <7 years old. Measurable differences in invasiveness ORs be-
tween individual GPSCs and STs were comparable to a change in sero-
type. Stratification of serotype by genotype (GPSC or ST) significantly
impacts sample size and subsequent power to detect subtle influences
of genotype. Many serotypes were not represented by multiple geno-
types in our dataset preventing the contribution of those GPSCs being
fully assessed. The generation of further temporally matched and geno-
typed collections from carriage and disease would increase power and
allow further investigation of our findings. Comparing national surveil-
lance with local carriage has the potential to introduce bias, but with
sufficient sampling acts as a convenient proxy for the national popula-
tion. Despite these limitations, differences in invasiveness within

Table 2

Pneumococcal invasiveness for pairs of genotypes that significantly differed within a serotype.

serotypes was observed in nearly a quarter (23%, 6/26) of the serotypes
tested. Genetic determinants of invasiveness need not be uniform across
a genotype; pneumococci within a given genotype will differ slightly in
gene content and sequence. This fits with our observations of differ-
ences between STs within 23F GPSC14/CC6279, heterogeneity within
GPSC38 between countries, and previous work by others showing dif-
fering invasiveness of PFGE clones within CC138 [41]. Our work inde-
pendently observes the increased invasiveness of serotype 14 in a
GPSC18/CC15 background compared to at least one other genotype, as
previously reported, and we highlight differential invasiveness for ge-
notypes within 6 serotypes in total [41].

There is substantial sequence variation in the cps locus within sero-
types to acknowledge [42]. Such variation could represent undetected
differences in capsular structure, which could in turn influence invasive-
ness. This was the case for serotype 6C before it was discriminated from
6A, though conversely, divergent genotypes of serotype 6B still result in
the same polysaccharide [42,43]. The cps loci within serotypes in the
GPS collection have been investigated [44]; of the serotypes implicated
as differing in invasiveness, only 16F in GPSC33 has an atypical cps locus,
which may explain why we observed it was less invasive than GPSC46,
which has the typical 16F cps genotype. After ruling out the influence of
novel serotypes, identification of the genetic variation driving the ob-
served invasiveness of GPSCs could offer alternative vaccine targets as-
sociated with severe disease. Genome wide association studies (GWAS)
have been used by others to identify candidate genetic variation associ-
ated with different manifestations of disease [31,45,46].

While MLST is limited in resolution to infer strain relatedness, it is an
internationally reproducible scheme. To date an international scheme
has not existed for clustering pneumococcal isolates using whole ge-
nome data, and alternative methods for clustering genomic collections
of this scale are scarce. Furthermore, current methods lack the ability
to place a strain in an existing framework, consequently clustering an
additional strain would require re-running an entire collection without

Serotype Least invasive OR [95% CI] Most invasive OR [95% CI] Conservative OR fold change Fisher's p-value
(predominant CC) (predominant CC) (country)

6A GPSC5 (CC172) 0.34[0.12-1.01] GPSC41 (CC1094) 2.96 [1.61-5.45] 16 0.0004 (ZA)

14 GPSC9 (CC63) 0.62 [0.22-1.73] GPSC18 (CC15) 12.45 [2.82-54.98] 16 0.0005 (ZA)
16F GPS(C33 (CC4088) 0.14 [0.06-0.36] GPSC46 (CC30) 2.62 [0.44-15.73] 1.2 0.0099 (ZA)
19F GPSC21 (CC347) 0.32[0.19-0.54] GPSC1 (CC320) 1.49 [0.78-2.88] 14 0.0006 (ZA)
23B GPSC7 (CC439) 0.14 [0.05-0.42] GPSC5 (CC172) 3.81[0.44-32.79] 1.05 0.005 (USA)
23F GPSC14 ST6279 (€CC6279) 0.81[0.43-1.54] GPSC14 ST2059 (€C6279) 5.31[1.71-16.54] 1.1 0.004 (ZA)

GPSC (Global Pneumococcal Sequence Cluster) OR (Odds ratio), ST (Sequence Type), CC (Clonal Complex), ZA (South Africa), CI (confidence interval), The conservative fold change in OR
was calculated by dividing the lower CI of the most invasive genotype by the upper CI of the least invasive genotype, within each serotype.
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a reproducible clustering nomenclature. Our definition of the pneumo-
coccal lineages (GPSCs) on an internationally sampled population, can
be used to assign GPSCs to any collection of pneumococcal genomes
using our database of GPSC reference genomes and PopPUNK [23]. The
GPSC database can be updated when novel GPSCs are assigned in future
collections, enabling stable international comparisons of pneumococcal
population structure [15]. The GPSCs are broadly back-compatible with
MLST as the vast majority of STs were found exclusively within a GPSC.
To that end, we provide a ST-GPSC conversion table with noted
exceptions, to facilitate cross referencing of non-genomic datasets
(Supplementary T18). We have used these GPSC designations,
genome-derived serotype and antibiotic resistance to facilitate an in
depth assessment of the lineages causing invasive disease in young chil-
dren in the post-PCV13 era[17], and to explore the mechanisms driving
the progression of serotype replacement.

Understanding the underlying genetic variation and characteristics
of GPSCs that influence resistance, invasiveness and pneumococcal pop-
ulation dynamics in a global context is highly informative. Such infor-
mation can be used for modelling vaccine replacement, predicting
vaccine impact and rational vaccine design. Our high-resolution geno-
mic approach for defining pneumococcal lineages across different col-
lections, in a manner that reflects pneumococcal biology, increases the
evidence required to build a global strategy for continued control of
pneumococcal disease.
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