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Abstract 

Background: Intermittent preventive treatment (IPT) of malaria is recommended as policy for certain high‑risk 
populations, but not currently for schoolchildren. A cluster‑randomized trial was conducted to evaluate the effect of 
IPT with dihydroartemisinin–piperaquine (DP) on primary schoolchildren in Jinja, Uganda. Results of the impact of IPT 
of schoolchildren on community‑level transmission have been reported previously. Here, secondary outcomes from a 
school‑based survey are presented.

Methods: Eighty‑four clusters (one primary school plus 100 households) were randomized to intervention and con‑
trol (1:1 ratio). Participants from intervention schools received monthly IPT with DP for up to 6 rounds (June–Decem‑
ber 2014). At endline (November–December 2014), randomly selected children from all 84 schools were surveyed (13 
per school) and thick blood smears were done. Those with fever or history of fever were tested with rapid diagnostic 
tests (RDTs) for malaria. Haemoglobin was measured in every fifth participant. Outcome measures included preva‑
lence of asexual parasites and gametocytes (by microscopy), and prevalence of anaemia. Prevalence outcomes were 
analysed using generalized linear Poisson models with log link function, incorporating a cluster‑level random inter‑
cept and quantified using prevalence risk ratios.

Results: Among 23,280 students listed on the 42 intervention school registers, 10,079 (43.3%) aged 5–20 years were 
enrolled into the IPT intervention and received at least one dose of DP; of these, 9286 (92.1%) received at least one full 
(3‑day) course. In total, 1092 children were enrolled into the final school survey (546 per arm) and had a thick blood 
smear done; of these, 255 had haemoglobin measured (129 intervention, 126 control). Children in the intervention 
arm were less likely to have asexual parasites (9.2% intervention vs 44.1% control, adjusted risk ratio [aRR] 0.22 [95% 
CI 0.16–0.30] p < 0.001), gametocytes (3.1% intervention vs 9.5% control, aRR 0.34 [95% CI 0.20–0.56] p < 0.001), fever 
(20.2% intervention vs 56.2% control, aRR 0.35 [95% CI 0.25–0.50] p < 0.001), or symptomatic malaria (5.1% interven‑
tion vs 35.7% control, aRR 0.14 [95% CI 0.08–0.26] p < 0.001). Prevalence of anaemia and mean haemoglobin were 
similar in both study arms.
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Background
Malaria remains a major global health problem. Despite 
malaria control achievements over the last 20  years [1], 
recent data suggest that the global response and success-
ful control of malaria may have plateaued, particularly in 
Africa [2]. According to the World Health Organization 
(WHO), the number of malaria cases reported from the 
ten highest burden African countries, including Uganda, 
increased by 3.5 million in 2017 [2]. In Uganda, efforts 
to scale-up coverage of malaria control interventions, 
through mass distribution of long-lasting insecticidal 
nets (LLINs), indoor residual spraying of insecticides 
(IRS), and effective case management with artemisinin-
based combination therapy (ACT), have yielded posi-
tive results [3, 4]. However, malaria control gains have 
been difficult to sustain [5, 6] and the burden of malaria 
remains high [2, 7]. Innovative measures have been called 
for to achieve sustainable malaria control in Uganda and 
elsewhere in Africa [8, 9].

Children under five are at high risk of malaria in 
endemic areas and have typically been targeted for 
malaria control interventions, along with pregnant 
women. However, this approach overlooks school-aged 
children whose burden of disease is also important [10]; 
they are at risk for asymptomatic malaria infections [11], 
often have the highest parasite prevalence within popu-
lations [12, 13], and are important contributors to the 
infectious reservoir for onward transmission of malaria 
[14, 15]. Moreover, as malaria control interventions are 
scaled-up, and transmission intensity and consequently 
the level of acquired immunity in the population fall, 
the peak age of clinical malaria may shift from the very 
young, to include older school-aged children [16]. Thus, 
malaria morbidity and mortality may paradoxically rise 
in school-aged children as malaria is controlled, high-
lighting the need to focus on this age group as malaria 
control intensifies [17].

Intermittent preventive treatment (IPT) is a well-
established malaria control intervention, which is rec-
ommended for pregnant women and infants. IPT of 
malaria in children under-five has also been operation-
alized as seasonal malaria chemoprevention (SMC) in 
West Africa. Chemoprevention is not currently policy for 

school-aged children, but extending SMC programmes to 
include older children has been investigated within the 
Sahel region of Africa [18, 19]. Evidence from Uganda 
and elsewhere suggests that IPT of malaria in school-
children provides significant health benefits and may 
improve cognitive function [20–23]. IPT of school-aged 
children also has the potential to reduce the infectious 
reservoir [22, 24]. Although momentum for chemopre-
vention of school-aged children is growing, more evi-
dence is needed to help guide policy-makers.

To further evaluate IPT of malaria in schoolchildren, a 
cluster randomized trial was conducted in Jinja, Uganda 
in 2014–2015. Children enrolled from intervention 
schools received monthly IPT with dihydroartemisinin-
piperaquine (DP) for up to 6 rounds of treatment. The 
primary objective of the trial was to evaluate the impact 
of IPT of schoolchildren on community-level indicators 
of malaria transmission, as measured in a post-inter-
vention cross-sectional community survey and continu-
ous entomological surveillance; these results have been 
reported previously [24]. Here, the secondary outcomes 
from school-based surveys are presented, adding to the 
evidence base for chemoprevention in older, school-aged 
children.

Methods
Study site
The study was carried out in Jinja district in eastern 
Uganda, where malaria transmission is perennial (Fig. 1). 
At baseline, the annual entomologic inoculation rate 
(assessed from January to April 2014) was 58.9 infective 
bites per person per year [24], and parasite prevalence in 
children enrolled in intervention schools (assessed from 
April to June 2014) was 43.2% (95% confidence interval 
[CI] 36.9–49.7%) with substantial heterogeneity between 
schools (ranging from 0 to 75%).

Clusters and randomization
Digitally enumerated maps were used to define clus-
ters, including one primary school plus the 100 clos-
est households surrounding the school [24]. One school 
was included per cluster and a buffer zone of 500  m 
was implemented between clusters. Public schools were 
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prioritized. In total, 84 schools were included (72 pub-
lic and 12 private schools). Clusters were assigned ran-
domly in a 1:1 allocation ratio to intervention or control 
in a parallel design by the trial statistician based in Lon-
don. Restricted randomization was applied using Stata/
SEv12 software aiming to balance assignment of trial 
arms between sub-counties, and school type (public or 
private). Allocation of primary schools to the two study 
arms was not masked.

IPT intervention
Prior to the study, team members met with key stake-
holders in health and education at the national and 
district levels to sensitize them to the trial using an infor-
mation sheet. Verbal consent to participate was obtained 
from headteachers of all schools, and copies of the school 
registers were obtained from intervention schools. 
Recruitment for the IPT intervention was carried out 
continuously from March to December 2014.

Study personnel met with parents/guardians to review 
initial eligibility criteria, including: (1) able to locate 

parent/guardian, (2) enrolled in intervention school, (3) 
age ≥ 5 years (4) no known allergy to DP, (5) no menarche 
(female students), (6) no history of cardiac problems or 
fainting, (7) no family history of long QT syndrome, (8) 
not currently using medications known to prolong the 
QT interval, and (9) willingness of parent/guardian to 
provide written informed consent. If these criteria were 
met, children were reviewed individually at school by 
study personnel for the final criteria, including: (1) able 
to locate student, (2) no menarche (female students), (3) 
weight ≥ 11  kg, and (4) provision of written assent by 
student (aged 8  years or above). Children who passed 
screening underwent a brief physical examination, 
including measurement of weight and were fingerprinted 
to facilitate identification for future IPT treatment.

Participants in the IPT intervention received DP (Duo-
Cotexcin, Holley Cotec Pharmaceuticals) monthly for up 
to 6 rounds of treatment (June to December 2014). DP 
was administered by study personnel orally once daily 
for 3  days, using full-strength DP tablets (40/320  mg), 
according to weight-based guidelines (11–20  kg: 

Fig. 1 Map of the study area
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40  mg/320  mg daily; 21–30  kg: 60  mg/540  mg daily; 
31–40 kg: 80 mg/640 mg daily; ≥ 41 kg: 120 mg/960 mg 
daily). All treatments were directly observed. The trial 
was open-label, and no placebo treatment was provided 
in the control schools.

School survey
A cross-sectional survey of children from each par-
ticipating school was conducted toward the end of the 
intervention (November–December 2014). A random 
sample of children was selected from each school regis-
ter. Recruitment and screening were stratified by class, 
to ensure equitable distribution of participants from all 
classes (P1–P7), until the target sample size of children 
per cluster was reached. A similar survey was conducted 
at baseline prior to the intervention delivery and was 
used to inform sample size calculations.

Study personnel invited parents/guardians of selected 
children for a meeting at the school to screen for eligi-
bility criteria, including: (1) enrolled in a participating 
primary school, and (2) agreement of parents/guardians 
to provide informed consent. If these criteria were met, 
study personnel interviewed each child individually at 
school for the final criteria, including: (1) able to locate 
student and (2) provision of written assent by student 
(aged 8  years or above). Children were excluded if they 
could not be located on more than 3 occasions.

If selection criteria were met, a brief questionnaire 
was administered to collect information on age, gender, 
bed net use, location of residence, and a brief food his-
tory. Participants had their temperature measured, and 
a finger-prick blood sample was obtained for a thick 
blood smear and haemoglobin measurement (in every 
fifth participant) using a portable spectrophotometer 
(HemoCue, Anglom, Sweden). RDTs were performed 
on participants with fever (tympanic membrane tem-
perature of ≥ 38.0 °C) or history of fever in the past 48 h 
(CareStart™ Malaria HRP-2 P. falciparum; ACCESS-
BIO). Children with a positive RDT were treated with 
artemether–lumefantrine unless they exhibited signs 
of severe malaria, in which case they were referred to 
appropriate health facilities. Detailed records of school 
attendance were collected from both intervention and 
control schools.

Laboratory procedures
Thick blood smears were stained with 2% Giemsa for 
30 min and read by experienced laboratory technologists, 
who were not aware of study arm assignments. Parasite 
and gametocyte densities were calculated from thick 
blood smears by counting the number of asexual para-
sites and gametocytes, respectively, per 200 leukocytes 
(or per 500, if the count was less than 10 parasites or 

gametocytes per 200 leukocytes), assuming a leukocyte 
count of 8000/μl. A thick blood smear was considered 
negative when the examination of 100 high power fields 
did not reveal asexual parasites or gametocytes. For qual-
ity control, all slides were read by a second microscopist 
and a third reviewer settled discrepant readings.

Outcome measures
The primary outcome among school children (a key sec-
ondary outcome of the trial) was prevalence of asexual 
parasitaemia, as measured by microscopy of individual 
blood smears. Secondary outcomes were prevalence of 
gametocytaemia, prevalence of anaemia [25], mean hae-
moglobin, and school attendance.

Sample size estimates
Sample size was determined for the trial’s secondary 
outcome, smear positive microscopy among school chil-
dren, and was refined in October 2014 after results from 
the baseline survey were available. Thirteen randomly 
selected children in each of the 84 clusters (1092 total), 
had over 80% power at significance level 5% to detect a 
relative reduction in parasite prevalence of 35%, corre-
sponding to an absolute difference in parasite prevalence 
of 11.5% (33% vs 21.5%), assuming a coefficient of varia-
tion between clusters of 0.50.

Statistical analysis
A secondary objective of the trial was to evaluate the 
impact of IPT for malaria in schoolchildren on clini-
cal malaria indicators, aiming to test the hypothesis that 
the prevalence of asexual parasitaemia would be lower 
in the children enrolled in intervention schools than in 
those enrolled in control schools. The plans for the analy-
sis presented here were outlined a priori in the statisti-
cal analysis plan for the trial. Data were analysed at the 
individual-level due to the large number of clusters per 
trial arm [26] and statistical methods which accounted 
for within-cluster correlation were used in all analyses. 
Prevalence outcomes were analysed using generalized 
linear Poisson models with log link function [27], incor-
porating a cluster-level random intercept and quantified 
using prevalence risk ratios. For other secondary quanti-
tative outcomes, linear regression models were used. The 
effect of the intervention was quantified by calculation 
of difference in mean outcome. Rate ratios were used to 
describe the effect of the intervention on rates. Second-
ary analyses were conducted post hoc to assess whether 
the effect of the intervention differed by age group, geo-
graphical locality, or timing since last dose of DP. Tests 
for interaction were conducted, as was a per protocol 
analysis.
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Ethical approval
The trial was approved by the Ugandan National Council 
for Science and Technology (UNCST Ref HS 1530), Mak-
erere University School of Biomedical Sciences Research 
& Ethics Committee (SBS REC 145), London School 
of Hygiene and Tropical Medicine Ethics Committee 
(LSHTM Ref 6509), School of Biological and Biomedi-
cal Sciences Ethics Committee, Durham University (DU 
SBBS/EC/STARTv5.0/June15) and University of Cali-
fornia, San Francisco Committee on Human Research 
(UCSF CHR Ref 074826). Sponsorship and insurance 
were provided by the LSHTM’s Clinical Trials Sub-Com-
mittee (Ref QA380). The trial was overseen by an inde-
pendent Data and Safety Monitoring Board and a Trial 
Steering Committee.

Role of the funding source
The funders played no role in the design of the study; in 
the collection, analysis and interpretation of data; in the 
writing of the report; or in the decision to submit the 
paper for publication.

Results
IPT intervention recruitment and delivery
Of the 84 primary schools participating in the trial, most 
were public (85.7%). There were 23,280 children listed on 
the registers for the 42 intervention schools (mean 554, 
range 131–1521) vs 21,299 listed for the control schools 

(mean 507, range 113–1251). As previously reported [24], 
a total of 89,823 single doses of DP were administered 
to 10,079 (43.3%) children from 30 June to 12 Decem-
ber 2014; of these, 9286 (92.1%) received at least one full 
3-day course of DP. The trial was completed as planned.

School survey recruitment
The final school survey was conducted from 13 Novem-
ber to 5 December 2014 (Fig. 2). Characteristics of partic-
ipants (n = 1092, 13 per cluster) were similar across both 
study arms (Table 1). A majority of children in both arms 
resided in rural areas within Jinja district. Most (80%) 
children enrolled from the intervention arm reported 
that they were enrolled in the IPT intervention. How-
ever, only 378 (69.2%) received any DP, and 356 (65.2%) 
received at least one full 3-day course of DP, while only 
15 (2.8%) received the maximum number of doses in all 6 
rounds, before the school survey. Of those who received 
any DP, there was wide variation in the timing of the 
last dose of DP before enrollment into the school survey 
(ranging from 1 to 113 days, with a mean of 15.3 [SD 16] 
days). Overall, 155 (28.4%) children received DP within 
14  days of the survey. Only 38.4% of children reported 
that they had slept under a bed net the previous night.

Impact on parasite prevalence
The prevalence of parasitaemia by microscopy was 
lower in the intervention than the control arm 

Control clusters
42 schools approached 

Intervention clusters
42 schools approached 

4 students excluded
1 no parent/guardian consent
2 unable to locate student
1 no assent (students > 8 years)

1 student excluded
0 no parent/guardian consent
0 unable to locate student  
1 no assent (students > 8 years)

550 students screened 547 students screened

546 students enrolled
Intention-to-treat analysis population

0 students received DP for IPT

546 students enrolled 
Intention-to-treat analysis population

437 students received DP for IPT

546 students included 
Per-protocol analysis population

437 students included 
Per-protocol analysis population

Fig. 2 Trial profile
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(intention-to-treat [ITT]: 9.2% vs 44.1%, adjusted risk 
ratio [aRR] 0.22 [95% CI 0.16‒0.30], p < 0.001) (Table 2). 
Similar results were observed when the data were 
stratified by age, however, differences were noted when 
stratified by area (Table  2, Fig.  3). In the rural areas, 
children in the intervention arm were much less likely 
to be parasitaemic than those in the control arm (ITT: 
10.4% vs 51.2%; aRR 0.20 [95% CI 0.14‒0.29, p < 0.001), 
while in the urban area of Jinja town, the difference 
between the two study arms was less marked (ITT: 5.6% 
vs 8.8%; aRR 0.65 [95% CI 0.28‒1.54], p = 0.33). Parasite 
prevalence varied widely by school (0% to 92%) and the 
coefficient of variation of parasite prevalence between 
the control clusters, k, was estimated to be 0.077. In the 
per-protocol analysis (Table  2), which only included 
children in the intervention arm if they reported that 
they had been enrolled in the intervention, similar 
results were seen, but the difference in parasite prev-
alence between the intervention and control arms 
was even more pronounced, with the exception of the 
results for the urban area.

To further explore the association between the tim-
ing of DP treatment and parasite prevalence, the chil-
dren in the intervention arm were stratified according 
to time since the last dose of DP and comparisons were 
made with the control arm (Table  3). As expected, 
parasite prevalence was lowest in children who had 
been treated with DP within the last 28 days, but par-
asitaemia in children treated more remotely was also 
reduced. Indeed, even those children from intervention 
schools who had never received DP had lower parasite 

prevalence than control children (26.2% vs 44.1%, prev-
alence ratio 0.57, [95% CI 0.40‒0.81], p = 0.001).

Impact on secondary outcomes
The prevalence of gametocytaemia was lower in the inter-
vention than the control arm (Table  4). Moreover, chil-
dren in the intervention arm were less likely to be febrile 
(elevated temperature or history of fever in the past 48 h) 
and to have symptomatic malaria (febrile with a positive 
rapid diagnostic test) than those in the control arm (5.1% 
vs 35.7%; aRR 0.14 [95% CI 0.08‒0.26], p < 0.001). No dif-
ferences in prevalence of anaemia or haemoglobin levels 
were observed between the two groups. School attend-
ance during the study period was similar in both study 
arms; the total number of days students were absent from 
intervention schools was 141,383 out of 2,557,776  days 
vs 116,456 out of 2,106,774 follow-up days in control 
schools, a rate of 5.5 per 100  days in both groups (rate 
ratio: 1.02 [95% CI 0.72‒1.43], comparing children in the 
intervention vs control arm).

Discussion
Intermittent preventive treatment (IPT) is a well-estab-
lished malaria control intervention that is recommended 
for certain high-risk populations, but is not current pol-
icy for schoolchildren. In this cluster-randomized trial, 
IPT with DP delivered monthly to primary schoolchil-
dren was associated with a substantial reduction in para-
sitaemia in all ages, particularly in rural areas. Children 
in the intervention arm were significantly less likely to 
have fever and symptomatic malaria, and also less likely 
to have gametocytaemia. These results contribute to the 

Table 1 Characteristics of participants surveyed in the final school survey

a Comparing urban vs rural areas, adjusting for clustering, p value = 0.29
b Missing for one child in the intervention arm

Characteristic Control (n = 546) Intervention (n = 546)

Age, years (mean, SE) 10.5 (0.08) 10.4 (0.08)

 5–10 years 276 (50.5%) 290 (53.1%)

 11–18 years 270 (49.5%) 256 (46.9%)

Female 285 (52.2%) 260 (47.6%)

Regiona

 Urban area

  Jinja town 91 (16.7%) 143 (26.2%)

 Rural areas

  Buwenge 169 (31.0%) 130 (23.8%)

  Kakira/Busedde 117 (21.4%) 130 (23.8%)

  Nile River 169 (31.0%) 143 (26.2%)

Enrolled in the  interventionb 0 (0%) 437 (80.0%)

Slept under a bednet the previous  nightb 194 (35.5%) 225 (41.2%)

Temperature (°C), mean (SE) 37.1 (0.04) 37.1 (0.04)
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growing body of evidence that targeting chemopreven-
tion to school-aged children provides important health 
benefits to individual children. Moreover, by reducing 
parasitaemia and particularly gametocytaemia, which 
might otherwise go untreated, IPT of schoolchildren 
stands to reduce the infectious reservoir of parasites 
available for onward transmission of malaria. IPT could 
be integrated into existing school infrastructure and pro-
grammes thus expanding the tools available to control 

malaria in school-aged children and the community as a 
whole.

In this study, a substantial number of children in the 
control arm were febrile and were subsequently diag-
nosed with symptomatic malaria by a positive RDT on the 
day of the survey; IPT markedly reduced the risk of fever 
and symptomatic malaria. There is growing awareness of 
the burden of malaria in school-aged children [10], and 
the benefits of providing preventive treatment for malaria 
to children through school-based programmes have been 

Table 2 Effect of the IPT intervention on parasite prevalence in the final school survey

a n = 1091, excluded one child with missing bednet information. Adjusted for age group (5–10, 11–18 years); baseline community parasite prevalence (quartiles: 
0–13%, 13.01–25%, 25.01–33%, > 33%); sex; bednet use (slept under a bednet the previous night); and region (urban area vs rural areas)
b p-value for interaction between trial arm and age group: Intention-to-treat analysis p = 0.18 for the unadjusted model and p = 0.36 for the adjusted model; per-
protocol analysis p = 0.41 for the unadjusted model and p = 0.53 for the adjusted model
c p-value for interaction between trial arm and region: Intention-to-treat analysis p = 0.02 for unadjusted model and p = 0.09 for adjusted model; per-protocol 
analysis p = 0.003 for the unadjusted model and p = 0.016 for the adjusted model

n+/N Prevalence (%) Unadjusted risk ratio 
(95% CI)

p Adjusted risk ratio 
(95% CI)a

p

Intention to treat analysis

 All ages

  Control 241/546 44.1 1 1

  Intervention 50/546 9.2 0.21 (0.14–0.30) < 0.001 0.22 (0.16–0.30) < 0.001

 5–10 yearsb

  Control 122/276 44.2 1 1

  Intervention 23/290 7.9 0.18 (0.12–0.28) < 0.001 0.19 (0.13–0.29) < 0.001

 11–18 yearsb

  Control 119/270 44.1 1 1

  Intervention 27/256 10.6 0.24 (0.16–0.36) < 0.001 0.25 (0.17–0.37) < 0.001

 Urban  areac

  Control 8/91 8.8 1 1

  Intervention 8/143 5.6 0.64 (0.26–1.58) 0.33 0.65 (0.28–1.54) 0.33

 Rural  areasc

  Control 233/455 51.2 1 1

  Intervention 42/403 10.4 0.20 (0.14–0.30) < 0.001 0.20 (0.14–0.29) < 0.001

Per protocol analysis

 All ages

  Control 241/546 44.1 1 1

  Intervention 20/438 4.6 0.10 (0.06–0.17) < 0.001 0.11 (0.07–0.17) < 0.001

 5–10 yearsb

  Control 122/276 44.2 1 1

  Intervention 9/237 3.8 0.09 (0.04–0.17) < 0.001 0.09 (0.05–0.19) < 0.001

 11–18 yearsb

  Control 119/270 44.1 1 1

  Intervention 11/201 5.5 0.12 (0.07–0.24) < 0.001 0.12 (0.06–0.23) < 0.001

 Urban  areac

  Control 8/91 8.8 1 1

  Intervention 5/106 4.7 0.54 (0.19–1.53) 0.24 0.49 (0.18–1.38) 0.18

 Rural  areasc

  Control 233/455 51.2 1 1

  Intervention 15/332 4.5 0.09 (0.05–0.16) < 0.001 0.09 (0.05–0.15) < 0.001
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examined in multiple studies [20, 28, 29]. A recent sys-
tematic review evaluated the efficacy and safety of IPT of 
schoolchildren [20]. Five studies, including four individu-
ally-randomized trials and one cluster-randomized trial, 
conducted in 2002–2012 in Kenya, Mali, and Uganda 
were included, which assessed a variety of anti-malarial 
regimens. This review suggested that the protective effi-
cacy of IPT against parasitaemia ranged from 49% to 94% 
depending on the regimen; monthly IPT with DP was 
most effective (94% protective efficacy [95% CI 93–96%]). 
Four additional studies of school-based malaria interven-
tions have been published since that review, including 
one individually-randomized trial of IPT for helminths 
and malaria with artemether–lumefantrine conducted 

in Ghana [21], one individually-randomized trial of IPT 
for malaria with sulfadoxine–pyrimethamine (SP) and 
SP + piperaquine conducted in the Democratic Republic 
of Congo [23], one cluster-randomized trial of IPT for 
malaria with artesunate + SP conducted in Mali [22], and 
one individually randomized trial of SMC of schoolchil-
dren with artesunate + amodiaquine conducted in Mali 
[19]. Synthesis of the findings is challenged by heteroge-
neity of the trial designs, regimens assessed, frequency 
of treatment, and outcome measures. But, overall, these 
studies demonstrate that delivering preventive treatment 
to schoolchildren with combination anti-malarial regi-
mens reduces the risk of parasitaemia, clinical malaria, 
and anaemia and may improve cognitive indicators.

Fig. 3 Parasite prevalence by region. For each region, the shaded bars represent the control arm and the open bars represent the intervention arm, 
both with 95% confidence intervals

Table 3 Association between time since last dose of DP and parasite prevalence

a Prevalence ratio adjusted for repeated measures within the same cluster

Treatment arm Days since last dose of DP Parasite prevalence PR (95% CI)a p-value

Control No prior DP 241/546 (44.1%) Reference group

Intervention No prior DP 44/168 (26.2%) 0.57 (0.40–0.81) 0.001

29–113 days 3/33 (9.1%) 0.20 (0.06–0.64) 0.006

1–28 days 3/345 (0.9%) 0.02 (0.01–0.10) < 0.001
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School-aged children are important contributors to the 
human infectious reservoir of malaria [13]. In malaria 
endemic areas, older children, who have acquired some 
anti-malarial immunity through repeated parasite expo-
sure, may harbour asymptomatic infections which often 
go untreated [11, 30]. School-aged children often have 
the highest parasite prevalence within populations [13], 
and may be more likely to carry gametocytes, the sexual 
stage of the parasite required for transmission [31, 32]. 
As a result, older children are a major source of malaria 
parasites for mosquitoes, perpetuating the transmis-
sion cycle [12, 14, 33]. A recent study, which examined 
the human infectious reservoir for Plasmodium falci-
parum in Burkina Faso and Kenya, found that gameto-
cyte carriage was common in asymptomatic individuals 
and that children were more likely to infect mosquitoes 
than adults [14]. After adjusting for mosquito exposure, 
the proportion of mosquitoes that had been infected 
by children aged 5–15  years ranged from 41 to 74% in 
high and moderate transmission areas. In Ethiopia, a 
study of schoolchildren highlighted the importance of 
sub-microscopic parasitaemia in this age group, and the 
positive association between parasite density and game-
tocyte density for both P. falciparum and Plasmodium 
vivax [34]. These findings are supported by another 
study from Burkina Faso that suggested children are an 
important component of the infectious reservoir and 
that sub-microscopic infections contribute to onward 
transmission [33]. In the main START-IPT trial, a 15% 
reduction in all-age community-level malaria parasite 
prevalence was found, despite lower than expected inter-
vention coverage, with the results suggesting reductions 

as large as 27% or as small as 0% were plausible (19.0% 
vs 23.1%, adjusted RR 0.85 [95% CI 0.73‒1.00], p = 0.05) 
[24]. The results of this survey showing that children 
from the intervention schools had lower parasite preva-
lence than control children, even if they did not receive 
DP provide further evidence that IPT with DP may have 
some community-level effect. Taken together, these find-
ings highlight the important role of school-aged chil-
dren in malaria transmission and the need to target this 
age group to control and ultimately eliminate malaria in 
higher transmission settings.

In this study, IPT with DP was associated with a sub-
stantial reduction in parasitaemia in rural areas, but 
these differences were more modest in the urban area of 
Jinja town. Parasite prevalence in the control arm varied 
widely between the rural (51.2%) and urban (8.8%) areas. 
Reduced transmission and burden of malaria in urban 
settings is well-described [35], likely due to a reduction 
in breeding sites, and improved housing construction 
[36]. Evidence that house design can provide protection 
from malaria is growing [37, 38]. Several studies have 
compared houses constructed with modern materials 
(typically made of brick, concrete, or metal walls, tiled or 
metal roof, closed eaves) to those constructed with tra-
ditional materials (typically made of mud walls, thatched 
roof, open eaves) [36, 39, 40]. A systematic review of 
studies from Africa, Asia, and Latin America suggested 
that residents of ‘modern’ homes are at lower risk of 
malaria infection and clinical malaria, than residents of 
‘traditional’ houses [36]. Given that children residing in 
urban areas may already be at lower risk of malaria than 
their rural counterparts, the added benefit of IPT in 

Table 4 Effect of the IPT intervention on secondary outcomes in the final school survey

a Measured in every 5th participant, results presented as the relative difference in mean values

n/N Prevalence (%) Crude risk ratio (95% CI) p Adjusted risk ratio (95% CI) p

Prevalence of gametocytaemia

 Control 52/546 9.5 1 1

 Intervention 17/546 3.1 0.33 (0.19–0.56) < 0.001 0.34 (0.20–0.56) < 0.001

Prevalence of fever

 Control 307/546 56.2 1 1

 Intervention 110/546 20.2 0.36 (0.25–0.51) < 0.001 0.35 (0.25–0.50) < 0.001

Symptomatic malaria

 Control 195/546 35.7 1 1

 Intervention 28/546 5.1 0.14 (0.08–0.26) < 0.001 0.14 (0.08–0.26) < 0.001

Prevalence of anaemia

 Control 26/126 20.1 1 1

 Intervention 24/129 18.6 0.90 (0.54–1.51) 0.69 0.82 (0.49–1.38) 0.46

Mean  haemoglobina

 Control 126 12.7 (SE 0.14) 0 0

 Intervention 129 12.9 (SE 0.13) 0.15 (− 0.22, 0.52) 0.42 0.19 (− 0.16, 0.54) 0.29
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such settings may be lower. The potential role of IPT of 
schoolchildren in urban settings may need to be explored 
further.

Schools provide a potential platform for delivery of 
health programmes to older children. Schools are already 
targeted for malaria control interventions in Uganda, 
acting as sites for targeted delivery of LLINs to school-
children. Selected schools located in hard-to-reach areas 
host facility outreach distribution programmes aiming to 
maintain universal coverage of LLINs achieved through 
mass LLIN distribution campaigns led by the Ministry 
of Health. Schools also serve as a focal point for societal 
and behaviour change communication. Ugandan school-
children have been engaged to deliver malaria interven-
tion messages to their families and friends, thus acting as 
‘change agents’ within their communities [41]. Although 
adding IPT to other school-based programmes would 
leverage resources and potentially save costs, low uptake 
of interventions may remain a challenge [42], mass drug 
administration can feed into existing concerns and mis-
trust in biomedical interventions [43, 44], and the fre-
quent administration of IPT will need to be taken into 
consideration [45]. Schools provide an attractive platform 
for delivery of health programmes, including malaria 
control interventions, but potential challenges and strate-
gies to address them should be explored and developed 
through operational research.

In this study, IPT with DP did not have an impact on 
haemoglobin levels or prevalence of anaemia. The aeti-
ology of childhood anaemia in low- and -middle income 
countries is multifactorial and complex [46]. However, 
P. falciparum malaria is a well-recognized risk factor 
for anaemia in malaria-endemic settings [47, 48], along 
with iron and nutritional deficiencies, parasitic and 
other chronic infections, and genetic haemoglobin disor-
ders [46]. The reason for the lack of association between 
IPT with DP and prevalence of anaemia in this study is 
unclear, however, the limited sampling of only 20% of 
the study population and the timing of the evaluation (at 
endline rather than several months after the intervention) 
may have contributed. Moreover, anaemia predominantly 
affects children under-five in Uganda and the prevalence 
of anaemia in this age group, as measured in the Malaria 
Indicator and Demographic Health Surveys, appears to 
be declining [3, 49].

This study had several limitations. First, intervention 
coverage in the study population was suboptimal. Only 
65.2% of children enrolled in the survey from the inter-
vention arm received at least one full dose of DP, and only 
2.8% received the full 3-day course of DP in all 6 rounds of 
treatment. However, despite this low coverage, a marked 
reduction in parasitaemia was achieved in the interven-
tion arm, even in those children who did not receive DP. 

Of note, IPT coverage in the school surveys, although 
low, was still higher than in the main trial, which does 
not rule out potential selection bias. Secondly, in this sin-
gle cross-sectional survey of schoolchildren, outcomes 
were only measured at a single timepoint. Prospective 
evaluation of children in a longitudinally followed cohort 
might have been preferable, as would longer term fol-
low-up of children to assess sustainability of impact, but 
resources precluded this type of evaluation. Finally, para-
sitaemia and gametocytaemia were only measured using 
microscopy, which may have underestimated prevalence 
measures. Indeed, there is an increasing appreciation of 
sub-microscopic infection and more sensitive molecular 
tests could have been applied, including loop mediated 
isothermal amplification (LAMP) or polymerase chain 
reaction (PCR) for asexual parasites [50, 51], and quanti-
tative nucleic acid-based amplification (QT-NASBA) for 
gametocytes [52].

Conclusions
In this cluster-randomized trial, IPT with DP delivered to 
primary schoolchildren reduced parasitaemia, gameto-
cytaemia, fever, and symptomatic malaria. These results 
contribute to the growing body of evidence that target-
ing chemoprevention to school-aged children would 
benefit individual children. Moreover, IPT of schoolchil-
dren stands to reduce malaria transmission by reduc-
ing the infectious reservoir of malaria, which could be 
an important new tool for countries seeking to intensify 
malaria control on the pathway to elimination. School-
based IPT could be integrated with school infrastruc-
ture and interventions, thus leveraging existing resources 
while expanding the toolbox for malaria control. Future 
research on IPT of schoolchildren should explore strat-
egies to achieve high coverage, approaches to integrate 
IPT with other school-based interventions, and cost-
effectiveness, particularly in urban settings. The poten-
tial impact of IPT of schoolchildren on community-level 
malaria transmission should also be investigated further, 
ideally at higher coverage levels and in different epidemi-
ological settings.
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