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can resolve Trypanosoma cruzi TcII/V/VI 
ecological and epidemiological associations 
in the Argentine Chaco
Niamh Murphy1*†, Natalia P. Macchiaverna2,3†, M. Victoria Cardinal2,3†, Tapan Bhattacharyya1, Pascal Mertens4, 
Nicolas Zeippen4, Yves Gustin4, Quentin Gilleman4, Ricardo E. Gürtler2,3 and Michael A. Miles1

Abstract 

Background: Trypanosoma cruzi, the protozoan agent of Chagas disease, is comprised of at least 6 genetic lineages 
(TcI-TcVI). Their geographical distribution, clinical associations and reservoir hosts are not fully elucidated, as genotyp-
ing is hampered due to the difficulty in isolating representative populations of organisms. Lineage-specific serological 
techniques may address these issues.

Methods: Trypanosoma cruzi lineage-specific serological assays were performed on human, canine, feline and arma-
dillo sera from the Gran Chaco in northern Argentina, a region of ongoing transmission. Synthetic peptides represent-
ing lineage-specific epitopes of the trypomastigote small surface antigen (TSSA) were used in ELISA, and the TcII/V/VI 
shared epitope peptide (TSSApep-II/V/VI) was used in the Chagas Sero K-SeT rapid diagnostic test (RDT).

Results: Chagas Sero K-SeT RDT, using Protein G to detect human and canine IgG, was at least as sensitive as 
TSSApep-II/V/VI ELISA using specific secondary antibodies. For sera from humans TSSApep-II/V/VI seroprevalence 
by Chagas Sero K-SeT was 273/393 (69.5%), for dogs 48/73 (65.8%) and for armadillos 1/7 (14.3%); by ELISA for cats 
5/19 (26.3%). The seroprevalence for humans was similar to that for Bolivian patients, amongst whom we previously 
observed an association of TSSApep-II/V/VI seropositivity with severity of cardiomyopathy. In humans, prevalence of 
TSSApep-II/V/VI recognition was associated with locality, and with increasing and decreasing age within the Qom 
and Creole populations, respectively. For dogs TSSApep-II/V/VI recognition was associated with being born before 
community-wide insecticide spraying (P = 0.05) and with Qom household (P < 0.001).

Conclusions: We show here that Chagas Sero K-SeT RDT can replace ELISA for TSSApep-II/V/VI serology of humans 
and dogs; for humans there were statistically significant associations between a positive Chagas Sero K-SeT RDT and 
being resident in Area IV, and for dogs association with Qom household or with being born before the mass spraying 
campaign; we also show that with cats the TcII/V/VI epitope can be detected by ELISA. We assessed the lineage distri-
bution in an unprecedented 83% of the human T. cruzi-seropositive population. These results form the basis for more 
detailed studies, enabling rapid in-the-field surveillance of the distribution and clustering of these lineages among 
humans and mammalian reservoirs of T. cruzi infection.
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Background
Chagas disease, caused by infection with the protozoan 
parasite Trypanosoma cruzi, remains a major public 
health problem in endemic regions of Latin America. The 
initial acute phase of infection may be asymptomatic or 
have mild and non-specific symptoms but can be fatal, 
particularly in infants, young adults or the immunocom-
promised. Without successful treatment T. cruzi infec-
tion is life-long: the immune response reduces the level of 
infection but is unable to eliminate it, as is apparent from 
xenodiagnosis or PCR of seropositive patients, and recru-
descent parasitaemia in the immunocompromised. In the 
chronic phase, around 30% of those infected will develop 
chagasic heart disease, and a proportion will also have 
gastrointestinal megasyndromes [1, 2]. Of the 1.5 million 
people in Argentina infected with T. cruzi, approximately 
370,000 are estimated to have chagasic cardiomyopathy 
[3].

Ongoing transmission is primarily maintained by con-
tamination with T. cruzi infected faeces of the predomi-
nant local triatomine insect vector, Triatoma infestans, 
which infests rural dwellings, especially in the Gran 
Chaco region, where vector control has had limited suc-
cess [4]. Transmission can also be oral by consumption of 
triatomine faeces-contaminated food or congenitally, and 
via T. cruzi infected blood or organ donors. Trypano-
soma cruzi infection is a zoonosis: dogs, cats and rodents 
associated with households are reservoir hosts, with evi-
dence of a positive association between the number of 
infected dogs and the prevalence of human infection [5]. 
A wide range of sylvatic mammals carry T. cruzi infection 
[6].

Trypanosoma cruzi is currently understood to com-
prise six genetic lineages TcI-TcVI [7], with TcBat pro-
posed as a seventh lineage, related to TcI [8]. Based on 
genotyping, TcII/V/VI lineages predominate in the 
domestic cycle in southern cone countries, including 
Argentina. However, genotyping may be biased by non-
representative isolation of T. cruzi, which has sequestered 
intracellular replication and only scanty chronic blood 
infections, and by competitive selection in vitro between 
the lineages.

The polymorphic trypomastigote small surface antigen 
(TSSA), expressed on bloodstream trypomastigotes, has 
been the only antigen applicable for indirect, serological 
identification of lineage(s) carried by a patient or res-
ervoir host [9]. TcI, TcIII and TcIV each have their own 
distinct potential TSSA epitope. At the same site a dis-
tinct amino acid sequence is shared by TcII/V/VI, and the 
hybrids TcV/VI also have a second sequence, as they are 
heterozygous and have two haplotypes at that locus [10]. 
Recombinant TSSA produced in E. coli or synthetic pep-
tide epitopes (TSSApep) have been used with Argentine 

chagasic samples for T. cruzi lineage-specific serology [9, 
11–21], particularly with the isoform common to TcII/V/
VI; the recombinant form has also been used for canine 
serology [12, 22].

We recently developed the novel rapid diagnostic test 
(RDT) Chagas Sero K-SeT incorporating TSSApep-II/V/
VI and found that response to this RDT was associated 
with severity of cardiomyopathy in Bolivian patients [23]. 
As Chagas Sero K-SeT uses Protein G to detect IgG, this 
same test should be directly applicable to both humans 
and diverse mammal species.

Here, our objectives were to apply T. cruzi lineage-spe-
cific TSSApep ELISA and the Chagas Sero K-SeT RDT to 
humans and mammals of the Chaco region of northern 
Argentina to gain further insight on ecological and epide-
miological associations, focusing here on TcII/V/VI.

Methods
Serum samples from seropositive patients and T. cruzi-
infected animals were from archives stored at the Univer-
sity of Buenos Aires.

Study sites
The two study sites were the municipalities of Pampa del 
Indio and Avia Terai in Chaco Province, northern Argen-
tina. The majority of samples tested were from a larger 
ongoing project on the eco-epidemiology and control of 
Chagas disease, taking place in the rural area of Pampa 
del Indio (1600 km2), consisting of 1446 inhabited house-
holds in 30 villages [24]. There are two main ethnic 
groups inhabiting the area, Creole and Qom; the latter 
make up half of the local population, but are unevenly 
distributed among the rural villages [25]. For logistic rea-
sons we divided the rural area into 4 study areas (named 
Areas I-IV). Vector control activities included a baseline 
house infestation assessment, followed by a community-
wide spraying with pyrethroid insecticides, which took 
place between 2007–2009, complemented by periodic 
entomological surveys and community-based surveil-
lance to detect re-infestation [5, 26–28].

In 2015, research activities were expanded to include 
Avia Terai municipality (770 km2), around 150 km from 
Pampa del Indio. This municipality comprises 307 rural 
households, inhabited by a Creole population. Figure  1 
shows typical dwellings and environment of the study 
sites.

Sample collection
Human samples
Trypanosoma cruzi seropositive human samples were 
obtained in different serosurveys that took place from 
August 2014 until July 2017. Serum samples were exam-
ined using conventional serology by means of two ELISAs 
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using either semipurified fractions of epimastigote lysate 
(Chagatest, Wiener lab, Argentina) or recombinant anti-
gens (ELISA Rec V3.0, Wiener lab). A patient was con-
sidered Chagas seropositive if reactive in both tests. 
Serologically discordant samples were tested by an indi-
rect immunofluorescence antibody test (IFAT) (Ififluor 
Parasitest Chagas, Laboratorio IFI, Buenos Aires, Argen-
tina) or submitted to the reference diagnosis laboratory 
at the National Institute of Parasitology “Dr. Mario Fatala 
Chabén” (Buenos Aires, Argentina) for a final diagnosis. 
In addition, 10 T. cruzi seronegative human samples from 
Buenos Aires (a non-endemic area) presenting with other 
pathologies and 20 seronegative samples from the study 
sites were assayed by Chagas Sero K-SeT.

Animal samples
In 2008, cross sectional house-to-house surveys were 
carried out targeting all dogs and cats within 7 contigu-
ous villages of Pampa del Indio considered to have a high 
infestation of T. cruzi infected triatomine bugs. Owners 
were interviewed via questionnaire and asked for further 
information on whether they had permanent residence 
in the study village or came from other villages outside 
the study area [25]. Additional samples were collected 
during a dog survey carried out in June 2016 (Cardinal 
et  al., unpublished). Dogs and cats ≥  4 months of age 
were examined by serology and younger animals and cats 
were examined by xenodiagnosis. Up to 7  ml of blood 
were taken from the animals by trained and experienced 

field personnel, and processed and stored as previously 
described [29]. A dog or cat was considered infected with 
T. cruzi if it was seroreactive with at least two serological 
tests (i.e. seropositive by ELISA and indirect haemagglu-
tination test) or if it was xenodiagnosis-positive.

Trypanosoma cruzi-infected armadillos were captured 
using traps baited with beef or chicken strips soaked in 
fish sauce in different trapping surveys from August 2008 
to August 2011. Traps were checked every morning and 
re-baited when needed. Full capture and sampling meth-
ods are described elsewhere [30]. Armadillos were exam-
ined for infection by xenodiagnosis as described [31] and 
not by conventional serology.

TSSA lineage‑specific serology
A total of 393 human, 85 dog (Canis familiaris), 19 cat 
(Felis catus) and 7 armadillo (6 Dasypus novemcinctus 
and 1 Tolypeutes malacus) serum samples were tested 
here by TSSApep lineage-specific ELISA and/or the 
Chagas Sero K-SeT RDT. A subset of 38/393 human and 
73/85 dog serum samples were tested by both TSSApep-
II/V/VI ELISA and Chagas Sero K-SeT. All these human 
and dog samples tested by both lineage-specific serology 
methods were positive by conventional serology.

TSSApep lineage‑specific ELISA
ELISAs were performed with synthetic peptides TSS-
Apep-II/V/VI, -III, -IV and -V/VI representing residues 
37–52 in the TSSA protein of those lineages (Additional 

Fig. 1 Study setting. a Location of Pampa del Indio and Avia Terai study sites in Chaco Province, Argentina. b Typical periurban dwelling. c, d Typical 
rural dwelling and environment in Avia Terai (c) and Pampa del Indio (d)
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file 1: Table S1) and with a control reference T. cruzi TcII 
lysate (IINF/PY/00/Chaco23) as described previously 
[17], with the modifications described below for human, 
canine and feline samples. In all cases, two replica plates 
were run simultaneously. Cut-offs were determined by 
first subtracting the plate background (no antigen wells) 
absorbance values from the mean reading for each sam-
ple; those samples that were then greater than five stand-
ard deviations higher than seronegative controls were 
considered positive.

Human samples
This was performed as described previously [17], with 
the following modifications: 0.1  μg of each TSSApep 
was used per well; goat anti-human IgG-HRP (074-1006: 
SeraCare, USA) diluted 1:5000 was used; reaction wells 
were developed with 100  μl of ABTS substrate (50-62-
00: SeraCare) and stopped with 50  µl of stop solution; 
absorbance values were determined at a wavelength of 
405 nm.

Dog and cat samples
ELISA plates were coated directly with each TSSApep 
at 0.1 μg/100 μl / well in coating buffer overnight. After 
blocking and washing steps as described [17], 100  μl of 
1:200 (dog) or 1:500 (cat) dilutions of sera were applied. 
Subsequently, 100  μl of goat anti-dog IgG-HRP (14-19-
06, SeraCare) diluted 1:12,000, or goat anti-cat IgG-HRP 
(14-20-06, SeraCare) diluted 1:5000, was used, prior to 
addition of substrate.

Chagas Sero K‑SeT RDT
This novel RDT, manufactured at Coris BioConcept, 
employed TSSApep-II/V/VI as the antigen and Pro-
tein G as the detection molecule for IgG, as previously 
described [23]. Tests were visually assessed at 15 min 
maximum incubation time and considered valid if the 
control band was present; the additional presence of a 
test line band of any intensity was considered positive 
for TSSApep-II/V/VI recognition. The absence of test 
line band was considered a negative test. The presence of 
the test band was determined by visual inspection of the 
RDT, independently by two individuals.

Trypanosoma cruzi genotyping
Trypanosoma cruzi lineage was determined by PCR of 
the genomic targets spliced-leader (SL) DNA, 24Sα ribo-
somal RNA genes and A10 from T. cruzi isolates [32, 33]. 
For humans only, a second PCR-based protocol target-
ing two nuclear genes (TcSC5D and TcMK) [34] was also 
employed [35] to allow for classification of lineages TcI-
TcVI as well as TcBat and TcV/VI [34].

Statistical analyses
Fisher’s exact test (two tailed) was used to calculate odds 
ratios, 95% confidence intervals and P-values (StataCorp. 
2019. Stata Statistical Software: Release 15. StataCorp 
LLC, Texas, USA). A P-value ≤ 0.05 was considered sig-
nificant. A Kappa test was used to determine the level 
of agreement between the TSSApep-II/V/VI ELISAs 
and Chagas Sero K-SeT RDT, the degree of agreement 
was qualified by Kappa and categorized as mild, moder-
ate or severe and 95% confidence intervals calculated 
(GraphPad, San Digeo, USA). For seropositive humans 
from Area II and IV, we performed univariate and mul-
tivariate (generalized linear model, GLMs) analyses to 
detect factors associated with RDT reactivity by means 
of a logistic regression. The full model tested was: RDT 
reactivity ~  age at diagnosis vs ethnic group + study 
area + gender + occurrence of T. infestans in the house-
hold  +  another cohabitant with reactive RDT. Linear 
regressions were calculated for each ethnic group. For 
Creoles, we forced the origin in 100%. Univariate analysis 
of dog RDT reactivity was performed for animals exam-
ined for diagnosis in 2008.

Results
A total of 373 human, 85 dog and 19 cat samples were 
seropositive as described in Methods. Seven armadillos 
were positive by xenodiagnosis. Additionally, 20 human 
samples were seronegative by conventional serology. 
Most (292/393, 74.3%) of the human samples belonged 
to 10 rural villages in Area II and Area IV from Pampa 
del Indio, where we aimed at full coverage of the detected 
seropositive population. In these villages a total of 1338 
inhabitants were serodiagnosed and 332 (24.8%) found 
seropositive for T. cruzi (Macchiaverna et  al., unpub-
lished) with 88.0% (292/332) of these seropositive 
patients assayed by Chagas Sero K-SeT RDT.

Chagas Sero K‑SeT is more sensitive than TSSApep‑II/V/VI 
ELISA for humans and dogs
Comparing the TSSApep-II/V/VI ELISA and the Chagas 
Sero K-SeT RDT, all human samples that were positive 
by TSSApep-II/V/VI ELISA were also positive by Chagas 
Sero K-SeT RDT for recognition of this peptide; Figure 2 
shows examples of correspondence between these meth-
ods. However, this RDT additionally identified 10 human 
samples as positive that were negative by TSSApep-II/V/
VI ELISA (Table  1), although seropositive by conven-
tional serology. Thus, for human samples tested by both 
methods, 13/38 (34%) were TSSApep-II/V/VI ELISA 
positive whereas 23/38 (61%) were positive by Chagas 
Sero K-SeT. Consequently the Kappa statistic showed 
moderate agreement between the two tests (0.51; 95% CI: 
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0.28–0.74). Similarly, all dog samples that were positive 
by TSSApep-II/V/VI ELISA were also positive by Cha-
gas Sero K-SeT RDT (Fig. 2); among these samples tested 
by both methods, 33/73 (45%) were TSSApep-II/V/VI 
ELISA positive whereas an additional 15 were positive by 
Chagas Sero K-SeT only (48/73; 66%). Here, the Kappa 
statistic found a good agreement between the two tests 

(0.60; 95% CI: 0.44–0.77). Furthermore, the Protein G 
conjugate in Chagas Sero K-SeT was highly effective in 
detecting binding of both human and canine IgG to TSS-
Apep-II/V/VI, without the need for the specific second-
ary antibodies used in the ELISA.

TSSApep ELISA
Table  1 shows the TSSApep lineage-specific ELISA 
results for human, dog and cat samples. For humans, 
ELISA reaction to TSSApep-II/V/VI occurred with 
13/38 (34.2%) sera, whereas it was 33/85 (38.8%) for dog 
and 5/19 (26.3%) for cat. Interestingly, of these animal 
samples 12 dog and all 5 cat samples were additionally 
positive for TSSApep-V/VI, which differs from TSSApep-
II/V/VI by a single amino acid substitution (Additional 
file 1: Table S1).

Chagas Sero K‑SeT RDT
In total across the two study sites the detected preva-
lences of TcII/V/VI infection by Chagas Sero K-SeT in 
humans (273/393, 69.5%) and dogs (48/73, 65.8%) were 
similar (Table  1). However, as expected due to the lack 
of Protein G efficacy with cats, Chagas Sero K-SeT was 
negative with sera of 2/2 cats strongly seropositive for 
TSSApep-II/V/VI by ELISA (Fig. 2). For armadillos, 1/7 
(14.3%) was weakly positive with Chagas Sero K-SeT 
(Fig. 2).

Comparison of lineage‑specific serology with genotyping
Corresponding T. cruzi genotyping data were available 
for a subset of the human, dog, cat and armadillo sam-
ples tested by TSSApep lineage-specific serology (Addi-
tional file 1: Table S2). A total of 28 of 38 human serum 
samples with genotyping data were reactive by Chagas 
Sero K-SeT. Given that all human-infecting lineages were 
genotyped as TcV or TcVI, the sensitivity of Chagas Sero 
K-SeT was 73.7% (95% CI: 57.8–85.1%). None of the 10 
T. cruzi seronegative serum samples from non-endemic 
patients with other pathologies was reactive by Chagas 
Sero K-SeT. However, 8 of 20 sera from the study sites 
that were negative with our conventional serology were 
reactive by Chagas Sero K-SeT. Overall, 8/30 samples 

Fig. 2 Comparison of Chagas Sero K-SeT RDT and ELISA for 
TSSApep-II/V/VI serology. a Chagas Sero K-SeT RDT, which uses 
Protein G for IgG detection, showing coating of nitrocellulose 
membrane and zones for application of sample then buffer. b 
Results were assessed visually and accorded with ELISA using 
specific secondary antibodies of both humans and dogs (samples 
H1 and Cf1, Cf2 positive by both tests; H2 negative by both tests), 
and was in some cases more sensitive than ELISA (sample Cf3: 
positive RDT, negative ELISA). Some dog and cat sera were positive 
by ELISA for TSSApep-V/VI in addition to TSSApep-II/V/VI (samples 
Fc1 and Fc2). Chagas Sero K-SeT was not able to detect feline IgG 
(samples Fc1, Fc2: positive ELISA, negative RDT). ELISA results were 
based on absorbance unit values and the cut off was determined by 
comparing to T. cruzi seronegative samples

Table 1 Human, dog and cat samples assayed by TSSApep ELISA and/or Chagas Sero K-SeT RDT

a Also positive by TSSApep-II/V/VI ELISA

Host Assayed by both ELISA and RDT Individual assay positives

RDT and 
ELISA positive

RDT only positive ELISA only 
positive

RDT and ELISA 
negative

II/V/VI ELISA III ELISA IV ELISA V/VI ELISA RDT

Human 13/38 10/38 0 15/38 13/38 0 0 0 273/393 (69.5%)

Dog 33/73 15/73 0 25/73 33/85 0 0 12/85a 48/73 (65.8%)

Cat 0 0 2/2 0 5/19 0 0 5/19a 0/2
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Chagas seronegative by conventional serology were reac-
tive by the RDT, thus estimated specificity was 73.3% 
(95% CI: 55.5–86.0%).

Of the 17 dogs for which the T. cruzi genotype was 
TcII/V/VI or TcVI, 11/17 were positive for TSSApep-
II/V/VI by Chagas Sero K-SeT (7 were TSSApep-II/V/VI 
ELISA positive only, 4 were additionally TSSApep-V/VI 
positive, and 6 were TSSApep ELISA negative); 2/17 were 
negative by both lineage-specific serological methods. 
For the single dog from which TcIII was genotyped, the 
corresponding serum was Chagas Sero K-SeT positive 
but TSSApep ELISA negative.

Of the four cats for which T. cruzi was genotyped as 
TcII/V/VI or TcVI, all were negative by TSSApep ELISA. 
The single armadillo that was TSSApep-II/V/VI positive 
by Chagas Sero K-SeT had T. cruzi genotyped as TcIII, as 
were the remaining armadillos for which these genotyp-
ing data were available.

Hosts, clustering and ecological associations
Among the two sites (Pampa del Indio and Avia Terai), in 
Pampa del Indio 242/350 (69.1%) were positive by Cha-
gas Sero K-SeT compared to 31/43 (72.1%) in Avia Terai, 
but this was not statistically significant (OR: 0.8; 95% CI: 
0.4–1.7; P = 0.69).

Univariate associations of TSSA-II/V/VI seropositiv-
ity by Chagas Sero K-SeT within the Pampa del Indio 
study Areas II and IV (humans and dogs) are shown in 
Table  2. For humans, there were no significant asso-
ciations between TSSApep-II/V/VI recognition and age, 
ethnicity, previously infested house, gender or having 
another householder TSSA-II/V/VI positive. A signifi-
cantly higher Chagas Sero K-SeT reactivity was observed 
for patients inhabiting Area IV compared to Area II (OR: 
2.07; 95% CI: 1.15–3.88; P = 0.02).

For dogs born before the mass insecticide spray-
ing programme there was a significant association with 
TSSApep-II/V/VI seropositivity (OR: 8.70; 95% CI: 0.78–
436.49; P = 0.046). Interestingly, unlike for humans, Qom 
household was also significantly associated with TSSA-
pep-II/V/VI recognition in dogs (OR: 8.39; 95% CI: 1.73–
78.91; P =  0.003). We found no evidence of significant 
associations between TSSApep-II/V/VI recognition and 
the roles and behaviour of dogs, such as sleeping inside 
or hunting (Table 2).

For the 19 cats that were assessed according to the 
available information, there were no significant asso-
ciations between recognition of TSSApep-II/V/VI or 
TSSApep-V/VI, Qom or Creole ownership, hunting, 
domestication and sleeping habits (data not shown).

By means of multivariate regression analysis variables 
associated with Chagas Sero K-SeT seropositivity were 
identified. A significant interaction between age and 

ethnicity was observed: for Qom the reactivity increased 
with age, whilst for Creoles it decreased (Table  3 and 
Fig.  3). For Creoles, the percentage of RDT reactive 
persons decreased with age with a significant slope of 
− 0.72 * age (in years) (R2 = 70.34, P = 0.0003) whereas 
for Qom the reactivity increased with a slope of 0.25*age, 
though it was marginally significant (R2  =  45.27, 
P = 0.098). As observed in the univariate analysis, inhab-
itants from Area IV exhibited a higher reactivity than 
those from Area II. No significant associations were 
observed with the other variables evaluated (Table 3).

Discussion
We have previously applied TSSApep lineage-specific 
ELISA to human chagasic sera [17] and to sylvatic pri-
mate hosts of T. cruzi [36], and adapted TSSApep-II/V/
VI serology to the Chagas Sero K-SeT RDT [23]. Here, 
we deployed TSSApep serology as a rapid and efficient 
means for surveillance of T. cruzi lineage distribution 
among humans and animals in active transmission cycles 
in the Chaco region of northern Argentina.

Previous reports using TSSA serology on Argentine 
chagasic samples have been principally based on ELISAs 
and immunoblotting [9, 11–16, 18–21]. Here, we applied 
TSSApep-II/V/VI serology in a user-friendly, low cost 
RDT format, applicable at point-of-care to patients. We 
show excellent concordance between the performance 
of the Chagas Sero K-SeT and TSSApep-II/V/VI ELISAs 
in humans, as also seen with Bolivian sera [23]. How-
ever, more samples tested by both lineage-specific meth-
ods were positive with the RDT, suggesting potentially 
either a greater sensitivity or lower specificity. However, 
in silico analysis and sequencing of the TSSA gene from 
T. cruzi encompassing a range of hosts and geographical 
locations has not identified any novel epitopes (unpub-
lished observations). Furthermore, none of the 30 seron-
egative samples was positive by this RDT, indicating that 
the RDT has greater sensitivity, as might be expected 
because the RDTs employ higher serum concentrations. 
Using the observed sensitivity and specificity we esti-
mated that the prevalence of infection with TcII/V/VI in 
the seropositive human population of Pampa del Indio 
is 88.2% (95% CI: 76.4–99.0%), which provides further 
support for the prevalence of hybrid lineages in infected 
humans from the Chaco, as indicated by time-consuming 
artificial xenodiagnosis, in vitro culture, parasite isolation 
and PCR-based lineage identification [35].

Interestingly, the prevalence of Chagas Sero K-SeT 
RDT positives in these Argentine patients (69.5% for 
Pampa de lndio and Avia Terai combined) is similar to 
that seen in Bolivian patients (66.9%) amongst whom we 
observed an association with severity of cardiomyopathy 
[23]. Moreover, the significant differences observed in the 
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Chagas Sero K-SeT RDT reactivity between study Areas 
II and IV of Pampa del Indio and the different trends for 
age in the two ethnic groups merits further study, given 
that this may be related to different incidence rates of 
cardiomyopathy.

One strength of this study is the level of coverage of 
the seropositive human population achieved. Overall, 
considering Area II and IV from Pampa del Indio, 59.9% 
of seropositive inhabitants yielded T. cruzi lineage iden-
tification. There is no precedent in the literature of such 
coverage in a well-defined human population. Most of 

the previous lineage identification studies comprised 
human samples collected in hospitals; therefore, the geo-
graphical or epidemiological context where the infection 
originated remains unclear [37–44]. Another constraint 
for mass lineage identification is the complexity of the 
traditional genotyping methods, which usually require T. 
cruzi isolation or large blood samples.

There was no association between ethnic group and 
overall human seroprevalence in Areas II and IV of 
Pampa del Indio. Nevertheless, Qom communities in 
Area III are predicted to have higher seroprevalence than 

Table 2 Univariate analyses of hosts, clustering and ecological associations with Chagas Sero K-SeT (Pampa del Indio)

Note: Areas II and IV only. In each case, only those samples where the examined information was known were included in the analysis

* Statistical significance (P ≤ 0.05)

Abbreviations: OR, odds ratio; CI, confidence interval

Category n No. positive (%) OR (95% CI) P-value

Humans Age 292 199 (68.2) 1.00 (0.98–1.01) 0.62

Ethnicity

 Creole 68 50 (73.5) 1

 Qom 224 149 (66.5) 0.72 (0.38–1.29) 0.28

Gender

 Female 144 100 (69.4) 1

 Male 148 99 (66.9) 0.89 (0.54–1.46) 0.64

Study area

 II 212 136 (64.2) 1

 IV 80 63 (78.8) 2.07 (1.15–3.88) 0.02*

Presence of T. infestans in the household

 No 59 43 (72.9) 1

 Yes 233 156 (67) 0.75 (0.39–1.40) 0.38

Cohabitant with reactive RDT

 No 146 102 (69.9) 1

 Yes 146 97 (66.4) 0.85 (0.52–1.40) 0.53

Dogs Function

 Guardian 41 26 (63.4) 1

 Hunting 32 23 (71.9) 1.47 (0.49–4.59) 0.47

Type of hunting

 Sylvatic animals 34 23 (67.6) 1

 Not hunting 16 11 (68.8) 1.05 (0.25–4.84) 1.00

Place of birth

 In study area 52 36 (69.2) 1

 Not in study area 12 9 (75) 1.33 (0.28–8.63) 1.00

Ethnicity of the household

 Creole 57 31 (54.4) 1

 Qom 22 20 (90.1) 8.39 (1.73–78.92) 0.00*

Born after mass spraying

 Yes 5 1 (20) 1

 No 73 50 (68.5) 8.70 (0.78–436.49) 0.05*

Place of sleeping

 Outside of the domicile 18 12 (66.7) 1

 Inside of the domicile 14 12 (85.7) 3.00 (0.41–35.07) 0.41
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Creole communities because of their lower formal edu-
cation level, tendency not to apply insecticides and lack 
of screened windows [45]. Creole households have been 
observed to have a substantially lower risk of triatomine 
bug and dog infection compared to Qom households in 
Area I [25].

We also demonstrate that Chagas Sero K-SeT is appli-
cable, without modification, to dogs. In two previous 
studies on T. cruzi lineage-specific serology in Argentine 
dogs [12, 22], recombinant TSSA-II/V/VI protein was 
only used in ELISA. As with humans, we found that there 
was concordance between ELISA and Chagas Sero K-SeT 
RDT, and that a greater number of T. cruzi seropositive 
samples tested by both methods were positive with the 
RDT, confirming the greater sensitivity.

Although we tested a limited number of dogs born after 
the community-wide insecticide spraying, dogs born 
prior to this intervention were over eight times more 
likely to be TSSApep-II/V/VI seropositive, showing the 
substantially higher risk before the spraying campaign, 
as well as cumulative risk with age. Qom dog owner-
ship, rather than Creole, was also associated with higher 
prevalence of TSSApep-II/V/VI seropositivity (Table  2). 
Furthermore, dogs were more frequently born in Qom 
communities rather than Creole, which influenced the 
age that the dogs entered the household, increasing the 
likelihood of the dog being exposed to triatomines [25]. 
Owners were asked if the dogs were hunters or guardians 
and whether the dogs slept inside or outside the domicile; 
in both of these categories there were not statistically 
significant differences in Chagas Sero-K SeT result, how-
ever, in both cases the categorical divisions may not be 
entirely definitive.

Trypanosoma cruzi infections in cats are not uncom-
mon, and also occur in domestic mice, which are caught 
and eaten by cats [46]; however, to our knowledge this is 
apparently the first application of T. cruzi lineage-specific 
serology to cats. TSSApep-II/V/VI positive cats had no 
association with the environmental and behavioural vari-
ables listed in Table 2 (data not shown). The Chagas Sero 
K-SeT failed with cats, not unexpectedly; the utility of 
Protein A, produced naturally by Staphylococcus aureus, 
rather than Protein G, for binding feline IgG has been 
reported [47, 48].

Both lineage-specific serology and genotyping indi-
cated the predominance of TcII/V/VI in this endemic 
region of the Gran Chaco. The Chagas Sero K-SeT 
RDT demonstrated similar prevalence and clustering in 
humans and dogs, with ELISAs showing prominent TcV/
VI infections in dogs and cats. Half of the dogs tested 
here that reacted by ELISA with TSSApep-II/V/VI also 
reacted with TSSApep-V/VI. TcV and TcVI are the most 
common genotypes infecting dogs and cats in this area 
[33].

Genotyping confirmed the association of TcIII with 
armadillos [49, 50]. As with the single TcIII infected dog, 
the Chagas Sero K-SeT positivities imply that both that 
dog and this armadillo were co-infected with TcII, TcV or 
TcVI. There is clearly a need for more extensive sampling 

Table 3 Multivariate analyses for associations with Chagas Sero 
K-SeT, Areas II and IV, Pampa del Indio

Abbreviations: OR, odds ratio; CI, confidence interval; RI, relative importance

* Statistically significant

Category OR (95% CI) P-value RI

Age 0.98 (0.93–1.02) 0.31 0.48

Ethnicity 0.45

 Creole 1

 Qom 0.38 (0.05–3.06) 0.36

Gender 0.27

 Female 1

 Male 0.93 (0.56–1.55) 0.78

Area 0.82*

 II 1

 IV 2.05 (1.08–3.88) 0.03*

Presence of T. infestans in the dwelling 0.41

 No 1

 Yes 0.69 (0.36–1.32) 0.26

Cohabitant with reactive RDT 0.32

 No 1

 Yes 0.82 (0.49–1.38) 0.45

Age vs ethnicity 0.23

Age vs Creole 1

Age vs Qom 1.04 (1.00–1.09) 0.04*

Fig. 3 Chagas Sero K-Set seroreactivity by age and ethnicity, Areas II 
and IV, Pampa del Indio. Numbers above dots indicate serum samples 
analysed for each category. Lines represent linear regressions for each 
ethnicity
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among armadillos and sylvatic hosts generally. As with 
felines, the IgG-binding capacity of Protein A has been 
exploited in studies on armadilloes (D. novemcinctus), 
including the use of Protein A-sepharose columns to iso-
late Ig [51] and of HRP-conjugated Protein A in ELISA to 
recognise IgG [52].

There is as yet no reliably effective lineage-specific 
serology for TcI. Reasons for this are unclear, but may 
be due to the predicted low antigenicity of this isoform 
of TSSA [17] and perhaps associated with the lack of an 
ascribed function for TSSA-I, in contrast to TSSA-II/V/
VI [53]. Thus, we cannot exclude some likely co-infec-
tions of TcI among the domestic and peridomestic trans-
mission cycles at these study sites. There are relatively 
low sensitivity ELISAs for TcIII and TcIV [17, 36, 54], 
and more robust antigens for these lineages would greatly 
facilitate the study of ecological associations. However, 
for TcII/V/VI, we have proven here the practicality of 
deploying lineage-specific serology for surveillance and 
for enhancing understanding of transmission cycles, and 
the Chagas Sero K-SeT RDT, which is applicable in the 
field, can give a result in 15 minutes with minimal sam-
ple quantities (of whole blood, serum or plasma). Clearly, 
resolution of the molecular epidemiology of Chagas dis-
ease will also continue to benefit from further compara-
tive genomics of T. cruzi isolates [55]. Nevertheless, the 
development of highly sensitive lineage-specific RDTs for 
all lineages, equally effective for both humans and a wide 
range of animals, with the aid of Protein G and Protein A 
detection, would be of great value. This would also allow 
the enigmatic issue of association of genetic lineage with 
pathology and prognosis of human Chagas disease to be 
re-addressed efficiently, and more widely [23].

We acknowledge that the samples used here repre-
sent single time-point sampling; however, they provide 
an antibody profile resultant from both historical and 
recent T. cruzi infections, although that profile may not 
be comprehensive.

Conclusions
We have shown that lineage-specific serology can identify 
T. cruzi infecting lineage, without parasite isolation and 
genotyping. Furthermore, ELISA is replaceable by an at 
least equally sensitive RDT, the Chagas Sero K-SeT, which 
incorporates Protein G detection, and is thus directly 
applicable to humans and several other mammalian spe-
cies. We assessed lineage distribution among 83% of the 
T. cruzi- seropositive human population, showing a sta-
tistically significant association of TSSApep-II/V/VI rec-
ognition with locality, and with increasing and decreasing 
age within the Qom and Creole populations, respectively. 
For dogs TSSApep-II/V/VI seroprevalence was linked 
to birth before the insecticide spraying programme and 

with Qom households. The Chagas Sero K-SeT is a low 
cost RDT, applicable for in-the-field surveillance, which 
can enhance understanding of the transmission pathways 
and clustering of the lineages, the epidemiology of Cha-
gas disease and the risk of its further emergence from 
sylvatic cycles. Further research is required to produce 
corresponding lineage-specific RDTs for T. cruzi lineages 
TcI, TcIII and TcIV, particularly for TcI.
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